Vector Algebra

Get insights from 117 questions on Vector Algebra, answered by students, alumni, and experts. You may also ask and answer any question you like about Vector Algebra

Follow Ask Question
117

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

a month ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

6.00
b·a = c·a
|a+b-c|² = |a|²+|b|²+|c|²+2(a·b - b·c - a·c)
= 4+16+16+2(a·b - 0 - a·b) = 36
⇒ |a+b-c| = 6

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

(a+3b). (7a-5b) = 7|a|² - 5ab + 21ab - 15|b|² = 7|a|²+16ab-15|b|²=0.
(a-4b). (7a-2b) = 7|a|² - 2ab - 28ab + 8|b|² = 7|a|²-30ab+8|b|²=0.
Subtracting: 46ab - 23|b|² = 0 ⇒ 2ab = |b|².
Substituting: 7|a|² + 8|b|² - 15|b|² = 0 ⇒ 7|a|² = 7|b|² ⇒ |a|=|b|.
cosθ = ab/ (|a|b|) = ab/|b|² = (1/2)|b|²/|b|² = 1/2.
θ = 60°.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

a*b=c ⇒ a.c=0,  b.c=0.
|c|² = |a|²|b|² - (a.b)² = (3)|b|² - 1. |c|=√2. So |b|²=1, |b|=1.
Projection of b on a*c.
a*c = a* (a*b) = (a.b)a - (a.a)b = a - 3b.
|a-3b|² = |a|²+9|b|²-6 (a.b) = 3+9-6 = 6.
l = |b. (a-3b)|/|a-3b| = | (a.b)-3|b|²|/√6 = |1-3|/√6 = 2/√6.
3l² = 3 (4/6) = 2.

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

|a * b|² + |a . b|² = |a|²|b|²
8² + (a . b)² = 2² * 5²
64 + (a . b)² = 100
(a . b)² = 36
a . b = 6 (since angle seems acute from options, but could be -6).

New answer posted

a month ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

a = i + j + 2k
b = -i + 2j + 3k
a + b = 3j + 5k
a . b = -1 + 2 + 6 = 7
a * b = |i,  j,  k; 1, 2; -1, 2, 3| = -i - 5j + 3k
(a - b) * b) = (a * b) - (b * b) = a * b
(a * (a - b) * b) = a * (a * b) = (a . b)a - (a . a)b = 7a - 6b
. The expression becomes (a + b) * (7a - 6b) * b)
= (a + b) * (7 (a * b)
= 7 [ (a * (a * b) + (b * (a * b) ]
= 7 [ (

...more

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

a 1 = x i ^ j ^ + k ^ & a 2 = i ^ + y j ^ + z k ^

given a 1 & a 2 are collinear then a 1 = λ a 2

( x i ^ j ^ + k ^ ) = λ ( i ^ + y j ^ + z k ^ )       

Since i ^ , j ^ & k ^ are not collinear so

S o x i ^ + y j ^ + z k ^ = λ i ^ 1 λ j ^ + 1 λ k ^     

Hence possible unit vector parallel to it be 1 3 ( i ^ j ^ + k ^ ) for λ =

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

 a*(a*b)=(a.b)a|a|2b=0|a|2b(asa.b=0given)

a*(a*(a*b))=|a|2a*b

a*(a*(a*(a*b)))=|a|2a*(a*b)=|a|2(|a|2b)=|a|4b

New answer posted

a month ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

c = α a + β b . . . . . ( i )

a . c = 7 b . c = 0           

a = i ^ + j ^ + k ^ | a | = 3          

b = 2 i ^ + k ^ | b | = 5 a . b = 2 + 1 = 1           

From   ( i ) a . c = α | a | 2 β

3 α β = 7 . . . . . . . . . . ( i i )        

b ¯ . c ¯ = α b ¯ . a ¯ + β | b | 2 α + 5 β = 0 . . . . . . . ( i i i )     

Solving α = 5 2 a n d β = 1 2  

2 | a + b + c | 2 = 7 5       

New answer posted

a month ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

 a*b=|i^j^k^1α33α1|= (4αi^+8j^4αk^)

|a*b|=32α2+64=83

322 + 64 = 192

2 = 1 2 8 3 2 = 4

a . b = 3 α 2 + 3 = 6 α 2 = 6 4 = 2

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

a = i ^ + 2 j ^ k ^ , b = i ^ j ^ , c = i ^ j ^ k ^      

-> r * a = c * a

r = c + λ a

Now, 0 = b . c + λ a . b a s r . b = 0  

λ = b . c a . b = 2        

r . a = a . c + 2 a 2 = 1 2           

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.