Application of Integrals

Get insights from 40 questions on Application of Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Application of Integrals

Follow Ask Question
40

Questions

0

Discussions

2

Active Users

0

Followers

New answer posted

2 weeks ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

3 x f ( x ) d x = ( f ( x ) x ) 3 x 3 3 x f ( x ) d x = f 3 ( x ) , differentiating w.r.to x

x 3 f ( x ) + 3 x 2 f 3 ( x ) x 3 = 3 f 2 ( x ) f ' ( x ) 3 y 2 d y d x = x 3 y = 3 y 3 x 3 x y d y d x = x 4 + 3 y 2  

After solving we get  y 2 = x 4 3 + c x 2  also curve passes through (3, 3) Þ c = -2


y 2 = x 4 3 2 x 2
which passes through ( α , 6 1 0 ) α 4 6 α 2 3 = 3 6 0 α = 6  

New answer posted

2 weeks ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

Since a is a odd natural number then | 1 3 y a d y | = 3 6 4 3 | ( y a + 1 a + 1 ) 1 3 | = 3 6 4 3 3 a + 1 a + 1 = 3 6 4 3  

 Þ a = 5

New answer posted

3 weeks ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

lim (x→∞) (∫? ^ (√x²+1) tan? ¹t dt) / x = lim (x→∞) (tan? ¹ (√x²+1) * (x/√ (x²+1) = lim (x→∞) (tan? ¹ x) * (x/√ (x²+1) = π/2

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given curve is y=cosx

y=sinx for 0xπ2

And yaxis

We know that sinx=cosx at x=π4and<π4<π2 i.e,  cosπ4=sinπ4=1/√2

So the point of intersection is at x=π4

New answer posted

4 months ago

0 Follower 16 Views

V
Vishal Baghel

Contributor-Level 10

The given equation of the lines are

2x+y=4(1)3x2y=6(2)x3y+5=0(3)

 Area of ?ABC=area(PCBQ)area(?APC)area(?AQB)

=14y(3)dx12y(1)dx24y(2)dx=14(x+5)3dx12(42x)dx24(3x62dx)

 The point of intersection of the circle and the parabola is . A(12,)&C(12,)

Taking in first quadrant

Area of (OABO)=area(OADO)+area(BADB)

 

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given vertices of the triangle are A(2,0),B(4,5)and C(6,3)

So, equation of line AB is y0=5042(x2)

=y=52(x2)

Similarly equation of BC is

y5=3564(x4)=y=5+(x+4)y=9x

And equation of AC is y0=3062(x2)

y=34(x2)

 Area of ?ABC

area(?ABE)+area(BCDE)area(?ACD)

=24yABdx+46yBCdx26yBCdx=2452(x2)dx+46(9x)dx2634(x2)dx=52[x222x]24+[9xx22]4634[x222x]26

=52[(4222.4)(2222.2)]+[(9.6622)(9.4422)]34[(6222.6)(2222.2)]=52[(88)(24)]+[541836+8]34[18122+4]=5+86=7unit2

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given that equation of

curve y=x2

line y=|x|={x,ifx0&x,ifx0}

Since the line passes through A&B in Ist and IInd quadrants

the equation must satisfy

y=x2

x=x2 for Ist quadrant and

x=x2 for IInd t quadrant

So, x2x=0 and x2+x=0

x(x1)=0 and x(x+1)=0

x=0,1 x=0,1

x=0,y=0

x=1,y=1 i.e, A has coordinate (1,1)

x=1,y=1 i.e, B has coordinate (1,1)

Now, area of AODA = area (AOM)-area (ADOM)

=01ylinedx01ycurvedx

=01xdx01x2dx=[x22]01[a33]01

=1213=326=16units2

 The required area of the region bounded by curve y=x2 and line y=|x| is 16+16=26=13units2

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given equation of the curve is |x|+|y|=1 , which can be break down into each quadrant .

For Ist quadrant,  |x|=x, |y|=y

i.e.,  x+y=1 - (1)

Similarly for IInd, IIIRd nad IVth quadrant

x+y=1 - (2)

xy=1 - (3)

xy=1 - (4)

We draw the above focus lines on a graph and find the area enclosed which is a square.

 Required area  (? ABCD)=4*area (? AOB) .

=4*01ydx=401 (x)dx=4 [xx22]01=4 [112]=4*12=2unit2

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given equation of the parabola is x2=y ---------(1)

and that the line is y=x+2 --------------(2)

Solving (1) and (2) for x and y

x2=x+2x2x2=0=x2+x2x2=0=x(x+1)2(x+1)=0=(x+1)(x2)=0=x=1&x=2

When x=1,y=(1)2=1

And x=2,y=22=4

 The point of intersection of the parabola and the lines A(1,1)&B(2,4)

Hence the required area enclosed region is ea(AOBA)=area(DABCD)area(DAOBCD)

=12ylinedx12ycurvedx=12(x+2)dx12x2dx=[x222x]12[x33]12

=[(2222.2)((1)22+2(1))][233(1)33]=[2+412+2][8+13]=1523=92unit2

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

The Given equation of the ellipse is x2a2+y2b2=1

And the equation of the line in xa+yb=1

With x and y intersept a and b

So, required area of the enclosed region is

a r e a ( B C A B ) = a r e a ( O B C A O ) a r e a ( ? O B A )

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.