Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

38

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

α=max {2? sin³?2? cos³? }
=max {2? sin³? 2? cos³? }=2¹?
β=min {2? sin³?2? cos³? }=2? ¹?
α¹/? +β¹/? = b/8
⇒4+1/4 = b/8
⇒17/4 = b/8 ⇒ b=-34
Again α¹/? β¹/? =c/8
⇒4*1/4 = c/8
⇒c=8
⇒c−b=8+34=42

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Co-ordinate of Q (b+2, a)
⇒ 1/√2 + 7i/√2 = (b+2+ai)e^ (iπ/4)
= (b+2+ai) (cos (π/4)+isin (π/4)
⇒ b−a+2=−1
b+2+a=7
⇒a=4
b=1
⇒2a+b=9

New answer posted

2 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

mean = Σx? f? /Σf? = (32+8α+9β)/ (8+α+β)=6
⇒2α+3β=16 . (i)
d? =x? −x? =−4,0,2,3
f? d? ²=64,0,4α,9β
Variance σ²=Σf? d? ²/Σf? =6.8
⇒ (64+4α+9β)/ (8+α+β)=6.8
⇒2.8α+ (−2.2β)=9.6
⇒28α−22β=96
14α−11β=48 . (ii)
Solving (i) and (ii),
⇒β=2, α=5
New mean=Σx? f? /Σf? =85/15=17/3

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

2x=tan (π/9)+tan (7π/18)
=sin (π/9+7π/18) / cos (π/9)cos (7π/18)
=sin (π/2) / cos (π/9)cos (7π/18)
=1 / cos (π/9)cos (7π/18)
=1 / cos (π/9)sin (π/2−7π/18)
=1 / cos (π/9)sin (π/9)
⇒x=1 / 2cos (π/9)sin (π/9)
=1 / sin (2π/9)=cosec (2π/9)

Again 2y=tan (π/9)+tan (5π/18)
⇒2y=sin (π/9+5π/18) / cos (π/9)cos (5π/18)
=sin (7π/18) / sin (π/2−π/9)sin (π/2−5π/18)
=sin (7π/18) / sin (7π/18)sin (4π/18) = cosec (2π/9)
⇒|x−2y|=0

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

z = A 2 B 3 C 4

The relative error in z is given by

Δ z z = 2 Δ A A + 3 Δ B B + 4 Δ C C

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

f (x)= {sinx, 0≤xπ}
f' (x)= {cosx, 0π}
f' (π/2? ) = 0
f' (π/2? ) = 0
f' (π? ) = 0
f' (π? ) = 0
⇒ f (x) is differentiable in (0, ∞)

New answer posted

2 months ago

0 Follower 13 Views

A
alok kumar singh

Contributor-Level 10

. xdy - ydx - x² (xdy + ydx) + 3x? dx = 0
⇒ (xdy - ydx)/x² - (xdy + ydx) + 3x²dx = 0 ⇒ d (y/x) - d (xy) + d (x³) = 0
Integrate both side, we get
y/x - xy + x³ = c
Put x = 3, y = 3
⇒ 1 - 9 + 27 = c
c = 19
Put x = 4
y/4 - 4y = 19 - 64
⇒ y = 12

New answer posted

2 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

for reflexive (x, x)
x³ - 3x²x + 3x³ = 0
. reflexive
For symmetric
(x, y) ∈ R
x³ - 3x²y - xy² + 3y³ = 0
⇒ (x - 3y) (x² - y²) = 0
For (y, x)
(y - 3x) (y² - x²) = 0
⇒ (3x - y) (x² - y²) = 0
Not symmetric

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.