Class 12th
Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
7 months agoContributor-Level 10
The area A of the isle with radius r is given by with respect to radius r A = πr2.
Then, rate of change of area of the circle
= 2πr.
When r = 6 cm
Q option (B) is correct.
New answer posted
7 months agoContributor-Level 10
Given, R (x) = 13x2 + 26x + 15.
Marginal revenue is the rate of change of total revenue with respect to the number of units sold Marginal revenue (MR) =
= 13 * 2x + 26
= 26x + 26
When x = 7,
MR = 26 * 7 + 26 = 182 + 26 = 208.
Hence, the required marginal reverse = ' 208.
Choose the correct answer for questions 17 and 18.
New answer posted
7 months agoContributor-Level 10
Given, c (x) = 0.007 x3- 0.003x2 + 15x + 400.
Since the marginal cost is the rate of change of total cost wrt the output we have,
Marginal cost, MC, =
= 0.007 * 3x2- 0.003 * 2x + 15.
When x = 17,
Then, MC = 0.007 * 2. (17)2 - 0.003 2 (17) + 15.
= 6.069 - 0.102 + 15.
= 20.967
Hence, the required marginal cost = ' 20, 97.
New answer posted
7 months agoContributor-Level 10
Let r cm and h cm be the radius and the height of the cone. Then,
h = r. H = 6h
So, volume, V of the cone = πr2h
= 12 * h3
Rate of change of volume of the cone wrt the height is
= 12 * π * 3 * h2.
As the sand is pouring from the pipe at rate of 12
we have
Hence, the height is increasing at the rate of cm/s.
New answer posted
7 months agoContributor-Level 10
Given, diameter of the spherical balloon = (2x + 1)
So, radius of the spherical r =
Then, volume of the spherical V =
Q Rate of change of volume wrt.tox,
New answer posted
7 months agoContributor-Level 10
Let x be the radius of the bubble with volume .V. then,
cm/s
andV =
Rate of change of volume =
= 4πr2 *
= 2πr2.
= 2x (1)2 2π.
New answer posted
7 months agoContributor-Level 10
Given eqn of the curve is 6y = x3 + 2.______ (1)
Wheny coordinate change s 8 times as fast as x-coordinate
= 8 _____ (2)
Now, differentiating eqn (1) wrt.x we get,
6 * 8 = 3x2 (using eqn (2)
x = 4.
When x = 4, we have, 6y = 43+ 2 = 64 + 2 + 66
y =11.
And when x = -4, we have, 6y = ( -4)3 + 2 = -64 + 2 = -62
The tequired point s are (4, 11) and
New answer posted
7 months agoContributor-Level 10
Since, the bottom of ground is increasing with time t,
= 2cm/s
From fig, Δ ABC, by Pythagorastheorem
AB2 + BC2 = AC2
x2 + y2 = 52
x2 + y2 = 25 ____ (1)
Differentiating eqn (1) w. r. t. time t we get,
m/s
When x = 4m, the rate at which its height on the wall decreases is
room
New answer posted
7 months agoContributor-Level 10
The volume v of a spherical balloon with radius r is V.
with respect its radius.
Then, the rate of change of volume
= 4 r2
Whenx = 10 cm,
= 4 10)2 = 400 cm3/cm
New answer posted
7 months agoContributor-Level 10
Let 'r' cm be the radius of volume V. measured Then,
Now, rate at which balloon is being inflated = 900
= 900
* 3 * r2 = 900.
When r = 15cm,
= cm/s.
Q Radius of balloon increases by per second.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 66k Colleges
- 1.2k Exams
- 684k Reviews
- 1800k Answers
