Class 12th

Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
12k

Questions

0

Discussions

58

Active Users

0

Followers

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, y = 4sinθ(2+cosθ)θ

Differentiating w rt.Ø we get,

dydθ=ddθ[4sinθ2+cosθθ]

=(2+corθ)ddθ(4sinθ)4sinθddθ(2+corθ)(2+cosθ)2dθdθ.

=(2+cosθ)(4cosθ)4sinθ(sinθ)(2+cosθ)21

=8cosθ+4cos2θ+4sin2θ(2+cosθ)2.1

=8cosθ+4(cos2θ+sin2θ)(2+cosθ)2(2+cosθ)2

=8corθ+4[4+cos2θ+4cosθ](2+corθ)2.

=8cosθ+44cos2θ4cosθ(2+cosθ)2

=4cosθcos2θ(2+cosθ)2=cosθ(4cosθ)(2+cosθ)2

When θ[0,π2] we know that, 0cosθ1.

So, 4cosθ>0

And also, (2 + cosθ)2> 0.

dydθ0θ[0,π2]

Hence, y is an increasing fxn of θ in [0,π2]

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, y = [x (x- 2)]2.

Differentiating the above w rt. x we get,

dydx=ddx[x](x2)2

=2[x(x2)]ddx[x(x2)]

=2[x(x2)][xddx(x2)+(x2)dxdx]

= 2 [x (x- 2)] (x + x- 2)

= 2x (x - 2) (2x - 2)

dydx = 4x (x - 2) (x - 1).

Now, dydx=0

4x (x - 2) (x - 1) = 0.

i e, x = 0, x = 2, x = 1 divides the real line into

four disjoint interval. (,0], [0,1],[1,2] and [2,].

when x [,0].

dydx=(ve)(ve)(ve)= (ve)0,0x=0

∴f (x) is decreasing in [,0].

When x[0,1]

dydx=(+ve)(ve)(ve) =(+ve)0,x=0x=1

∴f (x) is increasing in [0,1].

When x [1,2]

dydx=(+ve)(ve)(+ve)=(ve)0, 0for x=1+x=2

∴f (x) is decreasing.

When x(2,).

dydx=(+ve)(+ve)(+ve)=(+ve)0,0,for x=2

∴f (x) is in creasing

Hence, f (x) is increasing for x [0,1)x[2,)

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, y = log (1+x)2x2+x,x>1

Differentiating the above wrt.x.we get,

dydx=11+xddx(1+x) (2+x)ddx2x2xddx(2+x)(2+x)2

dydx=11+x(2+x)22x(2+x)2.

dydx=11+x4+2x2x(2+x)2=11+x4(2+x)2.

=(2+x)24(1+x)(1+x)(2+x)2

=4+x2+4x44x(1+x)(2+x)2

dydx=x2(1+x)(2+x)2.

The given domain of the given function isx> -1.

 (x + 1) > 0.

Also, x20

(2 + x)2> 0.

Hence, dydx=(+ve)(+v)(+ve)=(+ve)>0.

∴ y is an increasing function of x throughout its domain.

New answer posted

7 months ago

0 Follower 9 Views

V
Vishal Baghel

Contributor-Level 10

(a) f (x) = x2 + 2x - 5.

f(x) = 2x + 2 = 2 (x + 1).

At, f(x) = 0

2 (x + 1) = 0

x = -1.

At, x (,1),

f(x) = (- ) ve< 0.

So, f (x)is strictly decreasing or (,1).

At x ∈(1,)

f(x) = ( + ve) > 1

f(x) is strictly increasing on (1,).

(b) f(x) = 10 - 6x- 2x2

So, f(x) = - 6 - 4x = - 2 (3 + 2x).

Atf(x) = 0

 2 (3 + 2x) = 0.

 x = 32

At x (,32),

∴f(x) is strictly increasing on (,32)

At x (32,)

f(x) = ( -ve) ( + ve) = ( - ) ve< 0.

∴f (x) is strictly decreasing on (32,)

(c) f (x) = 2x3- 9x2- 12x.

So, f (x) =- 6x2- 18x- 12 = - 6 (x2 + 3x + 2).

= -6 [x2 + x + 2x + 2]

= -6 [x (x + 1) + 2 (x + 1)]

= -6 (x + 1) (x + 2)

At, f (x) = 0.

 6 (x + 1) (x + 2) = 0

x = -1 and x =

...more

New answer posted

7 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = 2x3- 3x2- 36x + 7.

So, f (x) = ddx (2x33x236x+7)=6x26x36.

= 6 (x2-x- 6).

= 6 (x2- 3x + 2x- 6)

= 6 [x (x- 3) + 2 (x- 3)]

= 6 (x- 3) (x + 2).

At, f (x) = 0

6 (x- 3) (x + 2) = 0.

So, when x- 3 = 0 or x + 2 = 0.

x = 3 or x = -2.

Hence we an divide the real line into three disjoint internal

(, 2) II (2, 3)andIII (3, )

At x ∈ (, 2),

f (x) = ( + ve) ( -ve) ( -ve) = ( + ve) > 0.

So, f (x) is strictly increasing in  (, 2)

At, x∈ ( -2,3),

f (x) = ( + ve) ( + ve) ( -ve) = ( -ve) < 0.

So, f (x) is strictly decreasing in ( -2,3).

At, x ∈ (3, )

f (x) = ( + ve) ( + ve) ( + ve) = ( + )ve> 0.

So, f (x) is strictly increasing in  (3, )

∴ (a) f (x) is strictly increasing in  (, 2)and (3, )

(b) f (x) is strictly decr

...more

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = 2x2 3x

So, f (x) = ddx (2x23x)=4x3.

Atf (x) = 0.

4x - 3 = 0

i e,  x=34 divides the real line into two

disjoint interval  (, 34) (34, )

(a) Now,

f (x) = 4x - 3 > 0 x (34, )

So, f (x) is strictly increasing in  (34, )

(b) Now, f (x) = 4x - 3 < 0 x (, 34)

So, f (x) is strictly decreasing in  (, 34)

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = sin x.

So, f (x) = cosx.

(a) when, x ∈ (0, π2) i e, x in 1st quadrat.

f (x) = cos.x> 0

f (x) is strictly increasing in  (0, π2) .

(b) when, x ∈ (π2, π) in IInd quadrat

f (x) = cosx< 0.

∴f (x) is strictly decreasing (π

(c) When, x ∈ (0, π).

f (x) = cosx is increasing in  (0, π2) and decreasing

in  (π2, π) and f  (π2) = cos π2=0.

∴f (x) is neither increasing not decreasing in (0, π).

New answer posted

7 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = e2x

So, f (x) = ddxe2x = e2xddx2x = 2e2x> 0 xR.

∴f (x) is strictly increasing on R.

New answer posted

7 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have, .

f (x) = 3x + 17.

So, f (x) = 3 > 0 xR

∴f (x) is strictly increasing on R.

New answer posted

7 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Given, R (x) = 3x2 + 36x + 5.

Marginal revenue,  ddxR (x)=ddx (3x2+36x+5)

= 3 * 2x + 36

= 6x + 36

When x = 15.

ddxR (x)=6*15+36 = 90 + 36 = 126

Option (D) is correct.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 684k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.