Class 12th

Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
12k

Questions

0

Discussions

58

Active Users

0

Followers

New answer posted

7 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x2 e–x

So, f (x) = x2ddxex+exdx2dx

=x2exddx (x)+ex2xdxdx

= -x2 e-x + e-x 2x.

= x e-x ( x + 2).

=x (2x)eex

If f (x) = 0.

x (2x)ex=0.

 x = 0, x = 2.

Hence, we get there disjoint interval

[, 0), (0, 2) (2, )

When, x  (, 0), we have, f (x) = ( -ve) ( + ve) = ( -ve) < 0.

So, f is strictly decreasing.

When x ∈ (0,2), f (x) = ( + ve) ( + ve) = ( + ve) > 0.

So, f is strictly increasing.

And when x ∈ (2, ), f (x) = ( +ve) ( -ve) = ( -ve) < 0.

So, f is strictly decreasing.

Hence, option (D) is correct.

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x3- 3x2 3x- 100.

So, f (x) = 3x2- 6x + 3 = 3 (x2- 2x + 1) = 3 (x- 1)2

For xR.

(x- 10)20 , 0 for x = 1.

3 (x- 1)2 0

 f (x) 0

∴f (x) is increasing on ?

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = log |cosx|.

f (x) = 1cosxddxx=sinxcosx=tanx

whenx  (0, π2),  we get.

tanx> 0 (Ist quadrant).

 tanx< 0

 f (x) < 0.

∴f (x) is decreasing on  (0, π2).

When x ∈ (3π2, 2π) we get,

tanx|< |0 (ivth quadrant).

-tanx|>| 0

 f (x) > 0

∴f (x) is increasing on  (3π2, 2π).

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = log sin x

So, f (x) = 1sinxdsinxdx=cosxsinx=cotx

When x (0, π2)

f (x) = cot x> 0 (Ist quadrat )

So, f (x) is strictly increasing on  (0, π2)

When x ∈ (π2, π)

f (x) = cot x< 0. (IIndquadrant ).

So, f (x) is strictly decreasing on  (π2, π)

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x? +1x

So, f (x) = 11x2=x21x2= (x1) (x+1)x2

So, for every x∈ I, where I is disjoint from [-1,1]

f (x) =  (+ve) (+ve) (+ve)= (+ve)>0whenx>1.

and f (x) =  (ve) (ve) (+ve) = ( + ve) > 0 when x< -1.

∴f (x) is strictly increasing on I .

New answer posted

7 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x2 + x + 1

So, f (x) = 2x + a

If f (x) is strictly increasing onx  (1, 2), f (x)>0.

So, 1

2*1<2*x<2*2

2<2x<4

2+a<2x+a<4+a.

2+a<f (x)<4+a.

The minimum value of f (x) is 2 + a and that of men value is 4 + a.

∴ 2 +a> 0and 4 + a> 0

a> -2 and a> -4.

a> -2.

∴The best value of a is -2.

New answer posted

7 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x 100 + sin x - 1.

So, f (x) = 100x99 + cosx.

(A) When x (0,1). We get.

x>0

x99> 0

100 x99> 0.

Now, 0 radian = 0 degree

and 1 radian = 180°*1π=180°(227)=57°.

So, cosx> 0 for x∈ (0,1) radian = (0,57)

∴f (x) > 0 for x∈ (0,1).

(B) When x ∈(π2,π) we get,

So, x> 1

x99> 1

100x99> 100. {?(π2,π)=(1.57,3.14) which is great than 1}

And cosx is negative between -1 and 0.

So, f (x) = 100x99 + cosx> 100 - 1 = 99 > 0.

∴f(x) is strictly increasing on (π2,π)

(c) When x ∈(0,π2), we get,

 x> 0

x99> 0

100x99> 0

and cosx> 0. (firstquadrant).

I e, f(x) > 0.

∴f(x) is strictly increasing on (0,π2)

Hence, option (D) is correct.

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(A) We have,

f(x) = cosx

So, f(x) = -sin x

When x [0,π2) we know that sin x> 0.

-sinx< 0. f(x) < 0 x(0,π2)

∴f(x) is strictly decreasing on (0,π2)

(B) We have, f(x) = cos 2x

So, f(x) = -2sin 2x

When x(0,π2) we know that sin x> 0.

i e, 0 π2
=> 0<2x< 

So, sin 2x> 0 (sinØ is ( +ve) in 1st and 2ndquadrant).

-2sin 2x< 0.

 f (x) < 0.

∴f (x) is strictly decreasing on (0,π2).

(c) We have, f(x) = cos 3x

f(x) = -3 sin 3x.

As 0<x<π2

0<3x<3π2

We can divide the interval into two

Case I At, 0 < 3x

sin 3x> 0.

-3 sin 3x< 0 {?0<Bx<π

0<x<π3.

 f(x) < 0.

∴f(x) is strictly decreasing on (0'π3)

case II. At π<3x<3π2weget(iiirdquadrout).

sin 3x< 0.

-3 sin 3x> 0.

 f(x) > 0. {?π<3x<3π2π3<x<π2}

∴f(x) is strictly increasing on (π3,π2)

Hence, f(x) is with a increasing or

...more

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = x2-x + 1.

So, f (x) = ddx (x2x+1)=2x1

Atf (x) = 0.

2x - 1 = 0

I e, x = 12 divides the real line into two disjoint interval the interval ( -1, 1) into

Two disjoint interval

(1, 12) (12, 1)

And f (x) is strictly increasing in  (12, 1) and strictly decreasing in  (1, 12)

Hence, f (x) is with a increasing or decreasing on ( -1,1).

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, f (x) = log x.

So, f (x) = ddx (logx)=1x.

i e, f (x) =1x > 0. When x0x (0, )

Hence, the logarithmic fx is strictly increasing on (0, ).

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 684k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.