Continuity and Differentiability

Get insights from 335 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
335

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

l i m x 2 + f ( x ) = 3 x + 5 = l i m h 0 3 ( 2 + h ) + 5 = 1 1 l i m x 2 f ( x ) = 3 x + 5 = 3 ( 2 ) + 5 = 1 1 l i m x 2 f ( x ) = x 2 = l i m h 0 ( 2 h ) 2 = l i m h 0 ( 2 ) 2 + h 2 4 h = ( 2 ) 2 = 4 Sincelimx2+f(x)=limx2f(x)limx2f(x) H e n c e , f ( x ) i s d i s c o n t i n u o u s a t x = 2 .

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

W e k n o w t h a t y = f ( x ) w i l l b e c o n t i n u o u s a t x = a i f l i m x a f ( x ) = l i m x a f ( x ) = l i m x a + f ( x ) G i v e n f ( x ) = x 3 + 2 x 2 1 l i m x 1 f ( x ) = l i m h 0 ( 1 + h ) 3 + 2 ( 1 + h ) 2 1 = 1 + 2 1 = 2 l i m x 1 f ( x ) = ( 1 ) 3 + 2 ( 1 ) 2 1 = 1 + 2 1 = 2 l i m x 1 + f ( x ) = l i m h 0 ( 1 + h ) 3 + 2 ( 1 + h ) 2 1 = 1 + 2 1 = 2 l i m x 1 f ( x ) = l i m x 1 f ( x ) = l i m x 1 + f ( x ) = 2 . H e n c e , f ( x ) i s c o n t i n u o u s a t x = 1 .

New answer posted

3 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatx=sintandy=sinptDifferentiatingbothsidesw.r.t.tdxdt=costanddydt=cospt.p=p.cosptdydx=dydtdxdt=p.cosptcostdydx=p.cosptcostAgaindifferentiatingbothsidesw.r.t.xddx(dydx)=p.ddx(cosptcost)d2ydx2=p.[cost.ddx(cospt)cospt.ddx(cost)cos2t]d2ydx2=p.[cost.(sinpt).pdtdxcospt.(sint).dtdxcos2t]d2ydx2=p.[pcost.sinpt+cospt.sintcos2t]dtdxd2ydx2=p.[pcost.sinpt+cospt.sintcos2t]1costd2ydx2=p.(pcost.sinpt+cospt.sintcos3t)Nowwehavetoprovethat(1x2)d2ydx2xdydx+ p2y=0L.H.S.=(1x2)[p.(pcost.sinpt+cospt.sintcos3t)]x(p.cosptcost)+ p2y=(1sin2t)[p.(pcost.sinpt+cospt.sintcos3t)]p.sintcosptcost+ p2.sinpt=cos2t[p2cost.sinpt+pcospt.sintcos3t]p.sintcosptcost+ p2.sinpt=p2cost.sinpt+pcospt.sintcostp.sintcosptcost+ p2.sinpt=p2cost.sinpt+pcospt.sintp.sintcospt+p2.sinptcostcost=0cost=0=R.H.S.Hence,proved.

New answer posted

3 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

  ( i ) G i v e n t h a t x m . y n = ( x + y ) m + n T a k i n g l o g o n b o t h s i d e s , w e g e t , l o g x m . y n = l o g ( x + y ) m + n [ ? l o g x y = l o g x + l o g y ] l o g x m + l o g y n = ( m + n ) l o g ( x + y ) m l o g x + n l o g y = ( m + n ) l o g ( x + y ) D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x m . d d x l o g x + n . d d x l o g y = ( m + n ) d d x l o g ( x + y ) m . 1 x + n . 1 y . d y d x = ( m + n ) 1 x + y ( 1 + d y d x ) m x + n y . d y d x = m + n x + y . ( 1 + d y d x ) m x + n y . d y d x = m + n x + y + m + n x + y . d y d x n y . d y d x m + n x + y . d y d x = m + n x + y m x ( n y m + n x + y ) . d y d x = m + n x + y m x ( n x + n y m y n y y ( x + y ) ) . d y d x = ( m x + n x m x m y x ( x + y ) ) ( n x m y y ( x + y ) ) . d y d x = ( n x m y x ( x + y ) ) d y d x = n x m y x ( x + y ) * y ( x + y ) n x m y = y x d y d x = y x H e n c e , p r o v e d .

( i i ) G i v e n t h a t d y d x = y x D i f f e r e n t i a t i n g b o t h s i d e s w . r . t . x d d x ( d y d x ) = d d x ( y x ) d 2 y d x 2 = x . d y d x y . 1 x 2 d 2 y d x 2 = x . y x y x 2 [ ? d y d x = y x ] d 2 y d x 2 = y y x 2 = 0 x 2 = 0 H e n c e , d 2 y d x 2 = 0 H e n c e , p r o v e d .

New answer posted

3 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar G i v e n t h a t f ( x ) = { x 2 + 3 x + p , x 1 q x + 2 , x > 1 a t x = 1 . L . H . L . f ' ( c ) = l i m x 1 f ( x ) f ( c ) x c f ' ( 1 ) = l i m x 1 f ( x ) f ( 1 ) x 1 = l i m x 1 ( x 2 + 3 x + p ) ( 1 + 3 + p ) x 1 = l i m h 0 [ ( 1 h ) 2 + 3 ( 1 h ) + p ] ( 1 + 3 + p ) 1 h 1 = l i m h 0 [ 1 + h 2 2 h + 3 3 h + p ] ( 4 + p ) h = l i m h 0 [ h 2 5 h + 4 + p ] [ 4 + p ] h = l i m h 0 h 2 5 h + 4 + p 4 p h = l i m h 0 h 2 5 h h = l i m h 0 h [ h 5 ] h = 5 R . H . L . f ' ( 1 ) = l i m x 1 + f ( x ) f ( 1 ) x 1 = l i m x 1 + ( q x + 2 ) ( 1 + 3 + p ) x 1 = l i m h 0 [ q ( 1 + h ) + 2 ] [ 4 + p ] 1 + h 1 = l i m h 0 q + q h + 2 4 p h = l i m h 0 q + q h 2 p h Forexistingthelimit q 2 p = 0 q p = 0 ( 1 ) l i m h 0 q h 0 h = q I f L . H . L . f ' ( 1 ) = R . H . L . f ' ( 1 ) t h e n q = 5 . N o w p u t t

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

139. Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

137. Yes, Let us take f(x)=|x1|+|x2|.

So, x = 1, x= 2 divides the real line into three disjoint intervals (,1],[1,2] and [2,).

For x(,1].

f(x)=(x1)+[(x2)]=x+1x+2=32x.

For x[1,2]. 

f(x)=(x1)(x2)=1.

For x[2,)

f(x)=x1+x2=2x3.

Hence, these polynomial fun are all continous and desirable. for all real values of x or, except x = 1 and x = 2.

ie, xR{1,2}.

For differentiavity at x = 1,

LHD = =limx1f(x)f(1)x1=limx132x1x1=limx122xx1.

=limx12(x1)x1

=limx12

= -2

RHD = =limx1+f(x)f(1)x1=limx1+11x1=limx1+0x1=0.

as L.HD ≠ R.HD

f is not differentiable at x =1.

For continuity at x = 1.

L.HL= =limx1f(x)=limx1=1.

RHL = limx1+f(x)=limx1+1=1 \ LHL = RHS

f is continuous at x = 1

For continuity & differentiability at x = 2

=limx2f(x)=limx21=1.

  =limx2+f(x)=limx2+(2x3)=43=1.

? LHL = RHL

f is continuous at x = 2

=limx2f(x)f(2)x2=limx211x2=limx2=0x2

  =limx2+f(x)f(2)x2=limx2+2x31x2

=limx2+2(x2)x2

=limx2+2

= 2

? LHD ≠ RHD

f is not differentiable at x = 2.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

136. Given, sin(A+B)=sinAcosB+cosAsinB

Differentiating w r t. 'x' we get,

ddxsin(A+B)=ddx(sinAcosB+cosAsinB)

cos(A+B)ddx(A+B)=sinAddxcosB+cosBddxsinA+cosAddxsinB+sinBddxcosA

cos(A+B)(dAdx+dBdx)=sinAsinBdBdx+cosBcosAdAdx+cosAcosBdBdxsinAsinBdAdx

cos(A+B)(dAdx+dBdt)=cosAcosB(dAdx+dBdx)sinAsinB(dAdx+dBdx)

=(cosAcosBsinAsinB)(dAdx+dBdx).

cos(A+B)=cosAcosBsinAsinB.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

135. Given, f(x)=|x|3={x3 if x0x3 if x<0

For x0,f(x)=|x|3=x3

and f(x)=3x2f(x)=6x

For x<0,f(x)=|x|3=(x)3=x3.

so, f(x)=3x2f(x)=6x

Hence, f(x)={6x, if x06x, if x<0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.