Continuity and Differentiability

Get insights from 335 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
335

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

111. Given, y=(tan1x)2

So, y1=dydx=2(tan1x)ddxtan1x

y1=2tan1x*11+x2

(x2+1)y1=2tan1x

Differentiating again w r t 'x' we get,

(x2+1)dy1dx+y1ddx(x2+1)=2ddxtan1x

(x2+1)y2+y1(2x)=21+x2

(x2+1)2y2+2x(1+x2)y1=2

Hence proved.

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

110. Kindly go through the solution

 

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

109. Given,  y=500e7x+600e7x

So,  dydx=500*7e7x+600 (7)e7x

d2ydx2=500*72e7x+600*72e7x

=49 [500e7x+600e7x]

=49*y

d2ydx2=49y

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

108. Given, y=Aemx+Benx _______(1)

So, dydx=Amemx+Bnenx _______(2)

d2ydx2=Am2emx+Bn2enx _________(3)

So, L.H.S = d2ydx2(m+n)dydx+mny

=Am2emx+Bn2enx(m+n)[Amemx+Bnenx]+mn[Aemx+Benx]

=Am2emx+Bn2enxAm2emxBmnenxAmnemxBn2enx+Amnemx+Bmnenx

= 0 = R.H.S.

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

107. Given y=3cos(logx)+4sin(logx)

So, y1=dydx=3ddxcos(logx)+4ddxsin(logx)

y1=3[sin(logx)]ddxlogx+4cos(logx)ddx(logx)

y1=3sin(logx)x+4cos(logx)x

xy1=3sin(logx)+4cos(logx) ______________(1)

Differentiating eqn (1) w r t 'x' we get,

ddx(xy1)=3ddxsin(logx)+4ddxcos(logx)

xdy1dx+y1dxdx=3cos(log(x))ddxlogx+4[sin(logx)]ddxlogx

xy2+y1=3cos(logx)x4sin(logx)x

x2y2+y1=[3cos(logx)+4sin(logx)]

x2y2+y1=y

x2y2+y1+y=0

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

106. Kindly go through the solution

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

105. Given,  y=5cosx3sinx

Differentiating w r t x we get,

dydx=5ddxcosx3ddxsinx

5sinx3cosx.

Differentiating again w r t. 'x' we get,

d2ydx2=5ddxsinx3ddxcosx

=5cosx+3sinx

= [5cosx3sinx]

=y

d2ydx2+y=0 . Hence proved.

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

104. Let y=sin(logx)

so, dydx=ddxsin(logx)=cos(logx)ddxlogx=cos(logx)x

d2ydx2=xddxcos(logx)cos(logx)dxdxx2

=x[sin(logx)]ddxlogxcos(logx)x2

=[xsin(logx)*1x+cos(logx)]x2

=[sin(logx)+cos(logx)]x2

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

103. Let y=log (logx)

So,  dydx=1logxddxlogx=1xlogx

d2ydx2=xlogxddx (1)1ddx (xlogx) (xlogx)2

= [xddxlogx+logxdxdx] [xlogx]2

= (x*1x+logx) [xlogx]2

= (1+logx) (xlogx)2

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

102. Let y=tan1x

So,  dydx=ddxtan1x=11+x2

d2ydx2= (1+x2)ddx (1) (1)ddx (1+x2) (1+x2)2

=2x (1+x2)2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.