Continuity and Differentiability

Get insights from 335 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
335

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

134. Given, x=a(cost+tsint) and y=a(sinttcost).

Differentiating w r t. 't' we get,

dxdt=addt(cost+tsint). 

=a(sint+tddtsint+sintdtdt). 

=a(sint+tcost+sint)=atcost

dydt=addt(csinttcost)

=a(costtddtcostcotdtdt)

=a(cost+tsintcost)=atsint

dydx=dy/dtdx/at=atsintatcost=tant

So,   d2ydx2=ddx(tant)=ddt(tant)dtdx. 

=sec2t*dtdx.

=sec2t*1(dx/dt)

=sec2t*1 at cost

=sec3tat

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

133.  Given, cosy=xcos(a+y).

x=cosycos(a+y)

Differentiating w r t 'y' we get,

dxdy=ddy(cosycos(a+y)).

=cos(a+y)ddycosycosyddycos(a+y)cos2(a+y).

=cos(a+y)(siny)cosy(sin(a+y))cos2(a+y).

=cos(a+y)siny+sin(a+y)cosycos2(a+y)

=sin(a+y)cosycos(a+y)siny.cos2(a+y)

dxdy=sin(a+yy)cos2(a+y){?sin(AB)=sinAcosBcosAsinB}

So, dydx=cos2(a+y)sina

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

132. Given, (xa)2+(yb)2=c2.

Differentiating w r t 'x' we get

ddx(xa)2+ddx(yb)2=ddxc2

2(xa)+2(yb)dydx=0

dydx=2(xa)2(yb)=(xa)(yb)

Again, d2ydx2={(yb)ddx(xa)(xa)ddx(yb)(yb)2}

={(yb)(xa)dydx(yb)2}

={(yb)+(xa)(xa)(yb)(yb)2}

={(yb)2+(xa)2(yb)3}

=c2(yb)3{?(xa)2+(yb)2=c2}

Then, L.H.S = {1+(dydx)2}3/2d2ydx2={1+(xa)2(yb)2}3/2c2(yb)2

={(yb)2+(xa)2}3/2(yb)3*(yb)3c2

=c2*3/2c2=c3c2=c Where c is a constant and is independent of a and b.

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

131. Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

130. Kindly go through the solution

 

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

129. Given, y=12(1cost). x=10(tsint). 

Differentiating w r t 't' we get,

dydt=12ddt(1cost)=12(0(sint))=12sint.

dxdt=10ddt(tsint)=10(1cost).

dydx=dy/dtdx/dt

=12sint10(1cost)=12sint10[1cost]

=12*2sint/tcost/210*2sin2t/2

{?sin2θ=2sinθcosθcos2θ=12sin2θ} =65cost/2sint/2=65cott/2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

128. Let y=xx23+(x3)x2.

Putting u=xx23  v=(x3)x2 we get,

y=u+v

dydx=dudx+dvdx ________(1)

Now, u=xx23

Taking log,

logu=(x23)logx.

1ududx=(x23)ddxlogx+logxddx(x23)

dudx=u[x23x+logx(2x)]

dudx=xx23[x23x+2xlogx]

And v=(x3)x2

logv=x2log(x3)

1vdvdx=x2ddxlog(x3)+log(x3)ddxx2

=x2*1*x3ddx(x3)+log(x3)2x

dvdx=v[x2x3+2xlog(x3)]

=(x3)x2[x2x3+2xlog(x3)]

Hence eqn (1) becomes

dydx=x(x23)[x23x+2xlogx]+(x3)x2[x2x3+2xlog(x3)]

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

127. Let y=xx+xa+ax+aa.

So, dydx=dxxdx+dxadx+daxdx+daadx.

dydx=dydx+axa1+axloga+0. _________(1)

Where u=xx

logu=xlogx (Taking log)

1ydydx=xddxlogx+logxdxdx (Differentiation w r t 'x')

1ydydx=xx+logx

dydx=u[1+logx]

=xx[1+logx]

Hence eqn (1) becomes,

dydx=xx[1+logx]+axa1+axloga.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

126. Let y=(sinxcosx)sinxcosx

Taking log,

logy=(sinxcosx)log(sinxcosx)

Differentiating w r t 'x' we get,

1ydydx=(sinxcosx)dlogdx(sinxcosx)+log(sinxcosx)ddx(sinxcosx).

=(sinxcosx)*1(sinxcosx)*(cosx+sinx)+log(sinxcosx)(cosx+sinx)

=(cosx+sinx)[1+log(sinxcosx)]

dydx=y(cosx+sinx)[1+log(sinxcosx)]

dydx=(sinxcosx)sinxcosx*(cosx+sinx)[1+log(sinxcosx)]

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

125. Let y=cos (acosx+bsinx)

So,  dydx=sin (acosx+bsinx)ddx (acosx+bsinx)

=sin (acosx+bsinx) [asinx+bcosx].

=sin (acosx+bsinx) (asinxbcosx)

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.