Continuity and Differentiability

Get insights from 335 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
335

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

104. Let y=sin(logx)

so, dydx=ddxsin(logx)=cos(logx)ddxlogx=cos(logx)x

d2ydx2=xddxcos(logx)cos(logx)dxdxx2

=x[sin(logx)]ddxlogxcos(logx)x2

=[xsin(logx)*1x+cos(logx)]x2

=[sin(logx)+cos(logx)]x2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

103. Let y=log (logx)

So,  dydx=1logxddxlogx=1xlogx

d2ydx2=xlogxddx (1)1ddx (xlogx) (xlogx)2

= [xddxlogx+logxdxdx] [xlogx]2

= (x*1x+logx) [xlogx]2

= (1+logx) (xlogx)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

102. Let y=tan1x

So,  dydx=ddxtan1x=11+x2

d2ydx2= (1+x2)ddx (1) (1)ddx (1+x2) (1+x2)2

=2x (1+x2)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

101. Let y=e6xcos3x

So, dydx=e6xddxcos3x+cos3xddxe6x

=e6x(sin3x)ddx(3x)+cos3xe6xddx(6x)

=e6x[3sin3x+6cos3x]

d2ydx2=e6xddx[3sin3x+6cos3x]+[3sin3x+6cos3x]ddxe6x

=e6x[3cos3xddx(3x)+6(sin3x)ddx(3x)]+[3sin3x+6cos3x]e6xddx(6x)

=e6x{9cos3x18sin3x18sin3x+36cos3x}

=e6x(27cos3x36sin3x)

=9e6x(3cos3x4sin3x)

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

100. Let y=exsin5x

so, dydx=exddxsin5x+sin5xddxex

=excos5xddx(5x)+exsin5x

=5excos5x+exsin5x.

d2ydx2=ddx(5excos5x+exsin5x)

=5exddxcos5x+5cos5xddxex+exddxsin5x+sin5xddxex

=5exsin5xddx(5x)+5excos5x+excos5xddx(5x)+exsin5x

=25exsin5x+5excos5x+5excos5x+exsin5x

=ex(10cos5x24sin5x)

=2ex(5cos5x12sin5x)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

99. Let y=x3logx

So,  dydx=x3ddxlogx+log2.dx3dx

=x3.1x+logx3x2

=x2+logx (3x2)

d2ydx2=ddx (x2+logx3x2)

=2x+6xlogx+3x2*1x

=2x+6xlogx+3x

=5x+6xlogx

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

98. Let y=logx

So,  dydx=ddxlogx=1x

d2ydx2=ddx1x=ddxx1=1x11=1x2

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

97. Let y=xcosx

So,  dydx=xddxcosx+dxdxcosx

=xsinx+cosx

d2ydx2=xddxsinxsinxdxdx+ddxcosx

=xcosxsinx+ (sinx)

= (xcosx+2sinx)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

96. Let y=x20

So,  dydx=20x201=20x19

d2ydx2=20*19x191

=380x18

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

95. Let y = x2 + 3x + 2

So,  dydx=2x+3+0  (differentiation w r t 'x')

? d2ydx2=2+0  (Again “ “ ) = 2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.