Differential Equations

Get insights from 136 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
136

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1y2)dxdy+yx=y(1<y<1)

dxdy+y1y2*x=y1y2 which is of form

dxdy+Px=Q&P=y1y2&Q=y1y2pdx=y1y2dx=122y1y2dx

=12log|1y2|=log[1y2]12

I.F=ePdx=elog[1y2]12=[1y2]12

 option (D ) is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

xdydxy=2x2dydx1xy=2x

Which is of form dydx+Py=Q

So,  P=1x

I.E=ePdx=e1xdx=elogx=elogx1=x1=1x

 Option (c) is correct

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We know that slope of tangent to the curve is dydx

x+y=dydx+5

dydxy=x5 Which has form dydx+Px=Q

where,P=1&Q=x5

I.F=ePdx=e1dx=ex

Thus the solution has the form

yex=(x5)exdx+c=xexdx5exdx+c=yex=I+5ex+cwhere,I=xexdx=xexdxddxxexdxdx=xex+exdx=xexex

yex=xexex+5ex+c=yex=xex+4ex+c=y=x+4+cex=y+x=4+cex

Given, the curve passes through (0,2) so y=2 when x=0

2+0=4ce024=cc=2

 The particular solution is

y+x=42ex

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We know the slope of tangent to curve is dydx .

 dydx=x+y

=dydxy=x which has form dydx+Py=Q

So, P=1&Q=x

I.F=ePdx=edx=ex

Thus the solution is of the form .

y*ex=x.exdx+c=xexdxdxdxexdxdx+c=xex+exdx+c=yex=xexex+c=y=x1+cex=y+x+1=cex

Given, the curve passes through origin (0,0) i.e, y=0,when,x=0

0+0+1=ce0=c=1

 Thus, equation of the curve is

y+x+1=ex

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx3ycotx=sin2x

dydx3cotx.y=sin2x Which is of form dydx+Py=Q

So, P=3cotx&Q=sin2x

I.F=ePdx=e3cotxdx=e3cotxdx=e3log|cotxdx|=elog(sin)3=1sin3x

Thus the solution is of the form.

y*1sin3x=sin2x.1sin3xdx+c=2sinxcosxsin3xdx+c{?sin2x=2sinxcosx}=2cosecxcotxdx+c=2cosecx+c=ysin3x=2sinx+c=2y=2sin2x+csin3x

Given, y=2,when,x=π2

2=2sin212+csin3π2=2=2+c=e=2+2=4

 The particular solution is, y=2sin2x+4sin3x

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1+x2)dydx+2xy=11+x2

Which is of form 

dydx+Px=Q

So, P=2x1+x2&Q=1(1+x2)2

Pdx=2x1+x2dx=log|1+x2|

I.F=ePdx=elog|1+x2|=1+x2

Thus the solution is if form,

y*(I.F)=Q.(I.F)dx+c

y(1+x2)=1(1+x2)2*(1+x2)dx+c=1(1+x2)dx+cy*(1+x2)=tan1x+c

Given, y=0,when,x=1

0=tan11+cc=tan11=π4

 The particular solution is

y(1+x2)=tan1xπ4

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+2ytanx=sinx

dydx+(2tanx)y=sinx Which is of form dydx+Px=Q

So, P=2tanx&Q=sinx

I.F=ePdy=e2tanxdx=e2log|secx|=elogsec2=sec2

Thus the solution is of the form y*(I.F)=Q.(I.F)dx+c

y.sec2x=sinx.sec2xdx+c=sinxcos2dx+c=tanx.secxdx+c=ysec2=secx+c=y=1secx+csec2x=cosx+ccos2=y=cosx+ccos2x

Given, y=0,Whenx=π3

=0=cosπ3+ccos2π3{c4=12,c=42,c=2}=0=12+c(12)2=0=12+c4

C = -2

 The particular solution is

y=cosx2cos2x

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(x+3y2)dydx=y(x+3y2)dy=ydxydxdy=x+3y2dxdy=xy+3y

dxdy1y.x=3y Which is form dxdy+Px=Q

So, P=1y&Q=3y

I.F=ePdy=e1ydy=elog|y|=elogy1=y1=1y

Thus the solution is of the form.

x*1y=3y.1ydy+c=xy=3dy+c=xy=3y+c=x=3y2+cy

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

ydx+(xy2)dy=0=ydxdy+xy2=0=dxdy+xyy=0

=dxdy+1y.x=y Which is of form.

dxdy+Px=Q

So, P=1y&Q=y

I.F=ePdy=e1ydy=elogy=y

Thus the general solution is of form, x*(I.F)=Q*(I.F)dy+c

x.y=y.ydy+c=xy=y2dy+c=xy=y33+c=x=y23+cy

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

(x+y)dydx=1=x+y=dxdy

=dxdyx=y Which is of form =dxdy+Px=Q

So,  P=1&Q=y

I.F=ePdy=e1dy=ey

Thus the general solution is of the form,  x* (I.F)=Q (I.F)dy+c

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.