Differential Equations

Get insights from 136 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
136

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

For a homogenous D.E. of the formula f (yx)

We put,  xy=0=x=vy

 Option (c) is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

2xy+y22x2dydx=0=2x2dydx=2xy+y2=dydx=2xy+y22x2=yx+12(yx)2=f(yx)

i.e, the given is homogenous.

Let, y=vx =yx=v so that dydx=v+xdvdx is the D.E.

Then, v+xdvdx=v+12v2

=xdvdx=12v2=dvv2=dx2x

Now, =dvv2=dx2x

=v2+12+1=12log|x|+c=1v=12log|x|+c

Putting back yx=v we get,

=xy=12log|x|+c

Givenyx=vwhenx=1 and y= 2

=12=12log|1|+c=c=12

 The particular solution is,

=xy=12log|x|12=2xy=log|x|1=y=2xlog|x|1=2x1log|x|

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

dydxyx+cosec(yx)=0=dydx=yxcosec(yx)=f(yx)

i.e, the given D.E. is homogenous.

Let, y=vx=yx=v So that, dydx=v+xdvdx in the D.E

Then, v+xdvdx=vcosecv

=xdvdx=cosecv=dvcosecv=dxx=sinvdv=dxx

Integrating both sides we get,

sinvdv=dxx=cosv=log|x|+c=cosv=log|x|c

Putting back v=yx we get,

=cosyx=log|x|c

Given, y=0,when,x=1

=cos0=log1c=c=1

 The required particular solution is

cos(yx)=log|x|+1=log|x|+log|c|=cos(yx)=log|cx|

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

[xsin2(yx)y]dx+xdy=0=[xsin2(yx)y]dx=xdy=dydx=[xsin2(yx)y]x=[sin2(yx)yx]=f(yx)

i.e, the given D.E is homogenous.

Let, y=vx=yx=v so that, dydx=vxdvdx in the D.E.

=v+dvdx=[sin2vv]=vsin2v=dvdx=sin2v=dvsin2v=dx

Integrating both sides we get,

=cosec2vdv=dx=cotv=log|x|+c=cotv=log|x|c

Putting back v=yx we have,

cotyx=log|x|c

Then, y=π4 when, x=1

cotπ4=log|1|c=c=1

 The required particular solution is,

cotyx=log|x|+1=log|x|+logc{?loge=1}=cotyx=log|ex|

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

x2dy+(xy+y2)dx=0=x2dy=(xy+y2)dx=dydx=(xy+y2x2)=[yx+(y2x)]=f(yx)

i.e, the D.E is homogenous.

Let, y=vx=v=yx so that dydx=v+xdvdx in the given D.E.

Then, v+xdvdx=[v+v2]=vv2

=xdvdx=2vv2=v(2+v)=dvv(2+v)=dxx

Integrating both sides we get,

dvv(2+v)=dxx=122dv2(v+2)=dxx=12v+2vv(v+2)dv=dxx=12{1vdv1v+2dv}=dxx

=12[logvlog|v+2|]=logx+logc=12log(vv+2)=logcx=log(vv+2)12=logcx=(vv+2)12=cx=vv+2=(cx)2

Putting back v=yx we get,

=yxyx+2=(cx)2=yy+2x=(cx)2=x2yy+2x=c2

Given, y = 1 when x = 1

So, =11+2=c2=c2=13

Hence, the required particular solution is,

=x2yy+2x=13=3x2y=y+2x

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(x+y)dy+(xy)dx=0=(x+y)dy=(xy)dx=dydx=yxx+y=yxxx+yy=yx11+yx=f(yx)

i.e, homogenous

Let, y=vx=v=yx so that dydx=v+ydydx in the D.E.

Then, v+xdvdx=v1v+1

=xdvdx=v1v+1v=v1v2vv+1=(v2+1)v+1=[v+1v2+1]dv=dxx

Integrating both sides,

v+1v2+1dv=dxx=122vv2+1dv+1v2+1dv=logx+c=log|v2+1|2+tan1v=logx+c

Putting back v=yx we get,

=12log|y2x2+1|+tan1yx=logx+c=12[log(y2+x2)logx2]+tan1yx+logx=c=12log(y2+x2)12logx2+logx+tan1yx=c=12log(y2+x2)logx+logx+tan1yx=c=12log(y2+x2)+tan1yx=c

Given, y=1,when,x=1

So, =12log(12+12)+tan111=c

=12log2+π4=c

Hence, the particular solution is

12log(12+12)+tan1yx=12log2+π4

New answer posted

4 months ago

0 Follower 11 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1+exy)dx+exy(1xy)dy=0(1+exy)dx=exy(1xy)dydxdy=exy(1xy)1+exy=f(xy)

Hence, the given D.E. is homogenous.

Let, x=yv=yx so that dydx=v+ydxdy in the D.E.

Then, v+ydvdy=ev(1v)1+ev

ydvdy=vevev1+evv=vevevvvev1+evydvdy=(ev+v)1+ev(1+evev+v)dv=dyy

Integrating both sides we get,

log|ev+v|=log|y|+log|c|

Putting back v=xy we get,

log|exy+xy|=log|cy|=exy+xy=cy

=x+yexy=c is the general solution.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

ydx+xlog(yx).dy2xdy=0ydx=[2xdyxlog(yx)dy]ydx=[2xxlog(yx)]dydydx=y2xxlog(yx)=yx(2logyx)=yx2logyx=f(yx)

Hence, the given D.E is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=v2logv

xdvdx=v2logvv=v2v+vlogv2logv=vlogvv2logv2logvv[logv1]dv=dxx1+1logvv[logv1]dv=dxx1[logv1]v[logv1]dv=dxx

[1v(logv1)1v]dv=dxx

Integrating both sides we get,

[1v(logv1)1v]dv=dxxdvv(logv1)logv=logx+logc

Let, logv1=t,so,ddv(logv1)=dtdv

1v=dtdvdvv=dtdttlogv=logx+logclogtlogv=logx+logclog|logv1|logv=logcx

Putting back v=yx we get,

log|log(yx)1|logyx=logcx=log[log(yx)1yx]=logcx=yx[log(yx)1]=cx

=log(yx)1=cy is the required solution.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is xdydxy+xsin(yx)=0

xdydx=yxsin(yx)dydx=yxsin(yx)x=yxsinyx=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=vsinv

xdvdx=sinvdvsinv=dxxcosecvdv=dxx

Integrating both sides we get,

cosecvdv=dxxlog|cosecvcotv|=logx+logclog|cosecvcotv|=logcxcosecvcotv=cx

Putting back v=yx we get,

cosecyxcotyx=cx1sinyxcosyxsinyx=cx

x[1cosyx]=csin(yx) is the solution of the D.E.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

{xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdydydx={xcosyx+ysinyx}y{ysinyxxcosyx}x=xycosyx+y2sinyxxysinyxx2cosyx

yxcosyx+(yx)2sinyx(yx)sinyxcosyx {Dividing numerator and denominator by x2 }

=f(yx)

Hence, the given D.E is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=vcosv+v2sinvvsinvcosv

xdvdx=vcosv+v2sinvvsinvcosvv=vcosv+v2sinvv2sinv+vcosvvsinvcosvvcosvvsinvcosv(vsinvcosvvcosv)dv=2dxx

Integrating both sides,

vsinvcosvvcosvdv=2dxxtanvdv1vdv=2log|x|+log|c|log|secv|log|v|=logx2+logclog|secvv|=logcx2secvv=cx2secv=cx2v

Putting back v=yx=cx2yx=cxy

secyx=cx2yx=cxy1cosyx=cxy1c=xycosyx

xycosyx=c1 where c1=1c 

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.