Differential Equations

Get insights from 136 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
136

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Let 'r' and U be the radius and volume of the spherical balloon.

Then, dUdt=k, k = constant

ddt(43πr3)=k4πr2drdt=k4πr2dr=kdt

Integrating both sides,

4πr2dr=kdt43πr3=kt+c

Given at t = 0, r = 3

So, 4π(3)3 = c

C = 36π

And, at t=3, r=6

So, 43π(6)3=3k+36π(c=36π)

288π36π=3kk=252π3=84π

Hence, putting value of c and k in,

43πr3=kt+c , we get,

43πr3=84π.t+36πr3=34π(84π.t+36π)r3=63t+27r=[63t+27]13

New question posted

4 months ago

0 Follower 1 View

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The slope of tangent is dydx and slope of line joining line (-4,-3) and point say P(x,y)

y(3)x(4)=y+3x+4

So, dydx=2(y+3x+4)

dyy+3=2x+4dx

Integrating both sides,

dyy+3=2x+4dxlog|y+3|=2log|x+4|+log|c|log|y+3|=log(x+4)2+log|c|log|y+3|=log|c(x+4)2|y+3=c1(x+4)2,where,c1=±c

Since, the curve passes through (-2,1) we get,

y=1,at,x=21+3=c(2+4)24=c*4c=1

 The equation of the curve is y+3=(x+4)2

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The slope of the tangent to then curve is dydx

dydx.y=xy.dy=xdx

So,

Integrating both sides,

y.dy=xdxy22=x22+cy2=x2+A, Where, A=2c

As the curve passes through (0, -2) we have,

(2)2=02+AA=4

 The equation of the curve is

y2=x2+4

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The Given D.E is

xydydx=(x+2)(y+2)ydyy+2=(x+2)2dxy+22y+2dy=(xx+2x)dx(12y+2)dy=(1+2x)dydx

Integrating both sides,

(12y+2)dy=(1+2x)dydxy2log|y+2|=x+2log|x|+cylog(y+2)2=x+logx2+cyx=log(y+2)2+logx2+cyx=log[(y+2)2.x2]+c

A the curve passes through (-1,1) then y=2,at,x=1

So, 11=log(1+2)2.(1)2+c

2=log1+cc=2

 The required equation of curve is,

yx=log[(y+2)2x2]2

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is y1=exsinx

dy=exsinxdx

Integrating both sides,

dy=exsinxdxy=I+c

Where, I=exsinxdx

=sinxexdxddxsinxexdx.dx=sinx.excosxexdx=sinxex{cosxexdxddx(cosx).I=exxdx}=sinx.ex{cosxex+sinxexdx}=sinx.excosxexII+I=ex(sinxcosx)I=ex2(sinxcosx)+c

Hence, y=ex2(sinxcosx)+c

When the curve passed point (0,0),

y=0,at,x=00=ex2(sin0cos0)+ce02(01)=cc=12

 The required equation of the curve is y=ex2(sinxcosx)+12

2y=ex(sinxcosx)+12y1=ex(sinxcosx)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given,  dydx=ytanx

dyy=tanxdx

Integrating both sides we get,

dyy=tanxdxlogy=log|secx|+logclogy=log|csecx|y=c1secx (where, c1=±c)

As,  y=1, at, x=0 we have,

1=c1sec (0)=cc=1

 The required particular solution is y=secx .

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Given, D.E. is

cosdydx=adydx=cos1 (a)dy=cos1 (a)dx

Integrating both sides,

dy=cos1 (a)dxy=cos1 (a)*x+cy=xcos1 (a)dx

Given,  y=1, atx=0

Then,  1=0cos1 (a)+c

c=1

The required particular solution is

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

x(x21)dydx=1dy=dxx(x21)

Integrating both sides,

dy=dxx(x21)y=dxx(x21)(x+1)dx+c.

Let, 1x(x1)(x+1)=Ax+Bx1+cx+1

1=A(x1)(x+1)+B(x)(x+1)+C(x)(x1)=A(x21)+Bx2+Bx+Cx2Cx=Ax2A+Bx2+Bx+Cx2Cx=(A+B+C)x2+(BC)xA

Comparing the coefficient,

A=1A=1(1)A+B+C=0(2)BC=0B=C(3)

Putting equation (1) & (2) in (1) we get,

1+B+B=01+2B=0B=12=C

So, 1x(x1)(x+1)=1x+12x1+12x+1

=1x+12(x1)+12(x+1)

Integrating becomes,

y=1xdx+12(x1)dx+12(x+1)dx+c=log(x)+12log(x1)+12log(x+1)+c=12[2log(x)+log(x1)+log(x+1)]+c=12[logx2+log(x+1)(x1)]+c=12logx21x2+c

Given, y=0whenx=2.

Then, 0=12log22122+c

0=12log34+cc=12log34

 The required particular solution is

y=12logx21x212log34

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is (x3+x2+x+1)dydx=2x2+x

dy=(2x2+xx3+x2+x+1)dxdy=2x2+xx2(x+1)+(x+1)dx=2x2+x(x+1)(x2+1)dx

Integrating both sides we get,

dy=2x2+x(x+1)(x2+1)dx

Let, 2x2+x(x+1)(x2+1)=Ax+1+Bx+cx2+1

2x2+2=A(x2+1)+(Bx+c)(x+1)=Ax2+A+Bx2+Bx+Cx+C=(A+B)x2+(B+C)x2+(A+C)

Comparing the co-efficient we get,

A+B=2(1)B+C=1(2)A+C=0(3)

Subtracting equation (1) – (2), we get

A+B(B+C)=21AC=1

But from equation (3) A=C so, we get,

A(C)C=12C=1C=12&A=(12)=12

And putting value of A in equation (1),

12+B=2B=212=412=32

Putting value of A,B and C in

2x2+x(x+1)(x2+1)=12x+1+32x12x2+1=12(x+1)+32(xx2+1)12(1x2+1)

Hence, the integration becomes

dy=12(x+1)dx+34(2xx2+1)dx12(1x2+1)dxy=12log(x+1)+34log(x2+1)12tan1x1+c

Given, At x=0,y=1

Then, 1=12log1+34log112tan1(0)+C

1=0+00+C{?log1=0tan100}c=1

 The required particular solution is:

y=12log(x+1)+34log(x2+1)12tan1x+1=14[2log(x+1)+3log(x2+1)]12tan1x+1=14[log(x+1)2+log(x2+1)3]12tan1x+1=14[log(x+1)2(x2+1)3]12tan1x+1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.