Exemplar Solution

Get insights from 1.3k questions on Exemplar Solution, answered by students, alumni, and experts. You may also ask and answer any question you like about Exemplar Solution

Follow Ask Question
1.3k

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Letthegiven pointsbeA(a,0,1)andB(0,1,2)AB=(a0)2+(01)2+(12)227=a2+1+1Squaringbothsides,weget27=a2+2a2=25a=±5Hence,thecorrectoptionis(b).

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Given pointsA (3, 4, 5)andthegivenO (0, 0, 0)OA= (30)2+ (40)2+ (50)2=9+16+25=50Hence, thecorrectoptionis (a).

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Ony-axis, x=0andz=0givenpointisP (3, 4, 5) ThepointAis (0, 4, 0) P A = ( 0 3 ) 2 + ( 4 4 ) 2 + ( 0 5 ) 2 = 9 + 0 + 2 5 = 3 4 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

New answer posted

3 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Given pointisP (3, 4, 5) Distance ofPfromyzplane= (03)2+ (44)2+ (55)2=9=3unitsHence, thecorrectoptionis (a).

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

( i ) 4 x 1 2 x 3 H e n c e , t h e f i l l e r i s ( ) ( i i ) I f 3 4 x 3 x 3 x * 4 3 x 4 H e n c e , t h e f i l l e r i s ( ) ( i i i ) I f 2 x + 2 > 0 x > 2 H e n c e , t h e f i l l e r i s ( > ) ( i v ) I f x > 5 4 x > 2 0 H e n c e , t h e f i l l e r i s ( > ) ( v ) I f x > y a n d z < 0 , t h e n x z < y z x z > y z H e n c e , t h e f i l l e r i s ( > ) ( v i ) I f p > 0 a n d q < 0 , t h e n p q > p H e n c e , t h e f i l l e r i s ( > ) ( v i i ) I f | x + 2 | > 5 t h e n x + 2 < 5 o r x + 2 > 5 x < 5 2 o r x > 5 2 x < 7 o r x > 3 S o , x ( , 7 ) ( 3 , ) H e n c e , t h e f i l l e r i s ( < ) o r ( > ) ( v i i i ) I f 2 x + 1 9 t h e n 2 x 9 1 2 x 8 2 x 8 x 4 H e n c e , t h e f i l l e r i s ( )

New answer posted

3 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a True or False Type Questions as classified in NCERT Exemplar

( i ) I f x < y a n d b < 0 x b > y b H e n c e , s t a t e m e n t ( i ) i s F a l s e . ( i i ) I f x , y > 0 t h e n x > 0 , y > 0 o r x < 0 , y < 0 H e n c e , s t a t e m e n t ( i i ) i s F a l s e . ( i i i ) I f x y > 0 t h e n x < 0 , a n d y < 0 H e n c e , s t a t e m e n t ( i i i ) i s T r u e . ( i v ) I f x y < 0 t h e n x < 0 , y > 0 o r x > 0 , y < 0 H e n c e , s t a t e m e n t ( i v ) i s F a l s e . ( v ) I f x < 5 a n d x < 2 x ( , 5 ) H e n c e , s t a t e m e n t ( v ) i s T r u e . ( v i ) I f x < 5 a n d x > 2 t h e n x h a s n o v a l u e . H e n c e , s t a t e m e n t ( v i ) i s F a l s e . ( v i i ) I f x > 2 a n d x < 9 x ( 2 , 9 ) H e n c e , s t a t e m e n t ( v i i ) i s T r u e . ( v i i i ) I f | x | > 5 t h e n x < 5 o r x > 5 x ( , 5 ) ( 5 , ) H e n c e , s t a t e m e n t ( v i i i ) i s F a l s e . ( i x ) I f | x | 4 t h e n 4 x 4 x [ 4 , 4 ] H e n c e , s t a t e m e n t ( i x ) i s T r u e . ( x ) T h e g i v e n g r a p h r e p r e s e n t s x 3 H e n c e , s t a t e m e n t ( x ) i s F a l s e . ( x i ) T h e g i v e n g r a p h r e p r e s e n t s x 0 H e n c e , s t a t e m e n t ( x i ) i s T r u e . ( x i i ) T h e g i v e n g r a p h r e p r e s e n t s y 0 H e n c e , s t a t e m e n t ( x i i ) i s &thins

New answer posted

3 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = 1 + 2 i | z | = ( 1 ) 2 + ( 2 ) 2 = 5 N o w f ( z ) = 7 z 1 z 2 = 7 ( 1 + 2 i ) 1 ( 1 + 2 i ) 2 = 7 1 2 i 1 1 4 i 2 4 i = 6 2 i 4 4 i = 3 i 2 2 i = 3 i 2 2 i * 2 + 2 i 2 + 2 i = 6 + 6 i 2 i 2 i 2 4 4 i 2 = 6 + 4 i + 2 4 + 4 = 8 + 4 i 8 = 1 + 1 2 i S o , | f ( z ) | = ( 1 ) 2 + ( 1 2 ) 2 = 1 + 1 4 = 5 2 = | z | 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = x + 0 i a n d x < 0 | z | = ( 1 ) 2 + ( 0 ) 2 = 1 , x < 0 Since,thepoint(x,0)liesonthenegativesideoftherealaxis(?x<0) Principleargument(z)=π H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = 1 + i c o s θ 1 2 i c o s θ = 1 + i c o s θ 1 2 i c o s θ * 1 + 2 i c o s θ 1 + 2 i c o s θ = 1 + 2 i c o s θ + i c o s θ + 2 i 2 c o s 2 θ 1 4 i 2 c o s 2 θ = 1 + 3 i c o s θ 2 c o s 2 θ 1 + 4 c o s 2 θ = 1 2 c o s 2 θ 1 + 4 c o s 2 θ + 3 c o s θ 1 + 4 c o s 2 θ i I f z i s a r e a l n u m b e r , t h e n 3 c o s θ 1 + 4 c o s 2 θ = 0 3 c o s θ = 0 c o s θ = 0 θ = ( 2 n + 1 ) π 2 , n N . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z 1 = r 1 ( c o s θ 1 + i s i n θ 1 ) a n d z 2 = r 2 ( c o s θ 2 + i s i n θ 2 ) Since|z1+z2|=|z1|+|z2| z 1 + z 2 = r 1 c o s θ 1 + i r 1 s i n θ 1 + r 2 c o s θ 2 + i r 2 s i n θ 2 | z 1 + z 2 | = r 1 2 c o s 2 θ 1 + r 2 2 c o s 2 θ 2 + 2 r 1 r 2 c o s θ 1 c o s θ 2 + r 1 2 s i n 2 θ 1 + r 2 2 s i n 2 θ 2 + 2 r 1 r 2 s i n θ 1 s i n θ 2 = r 1 2 + r 2 2 + 2 r 1 r 2 c o s ( θ 1 θ 2 ) B u t | z 1 + z 2 | = | z 1 | + | z 2 | S o r 1 2 + r 2 2 + 2 r 1 r 2 c o s ( θ 1 θ 2 ) = r 1 + r 2 S q u a r i n g b o t h s i d e s , w e g e t r 1 2 + r 2 2 + 2 r 1 r 2 c o s ( θ 1 θ 2 ) = r 1 2 + r 2 2 + 2 r 1 r 2 2 r 1 r 2 2 r 1 r 2 c o s ( θ 1 θ 2 ) = 0 1 c o s ( θ 1 θ 2 ) = 0 c o s ( θ 1 θ 2 ) = 1 θ 1 θ 2 = 0 θ 1 = θ 2 S o , a r g ( z 1 ) = a r g ( z 2 ) H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.