Maths NCERT Exemplar Solutions Class 11th Chapter Six: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Six 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Six )

Payal Gupta
Updated on Sep 2, 2025 11:21 IST

By Payal Gupta, Retainer

Table of contents
  • Linear Inequalities Short Answer Type Questions
  • Linear Inequalities Long Answer Type Questions
  • Linear Inequalities Objective Type Questions
  • Linear Inequalities True or False Type Questions
  • Linear Inequalities Fill in the blanks Type Questions
  • JEE Mains 2020
  • JEE Mains 2021
View More
Maths NCERT Exemplar Solutions Class 11th Chapter Six Logo

Linear Inequalities Short Answer Type Questions

1. Solve: 4 x 6 and 3 x + 1 1 , ( x > 0 )
Sol. G i v e n t h a t 4 x + 1 3 6 x + 1 , x > 0 4 3 ( x + 1 ) 6 4 3 x + 3 6 4 3 3 x 6 3 1 3 x 3 1 3 x 1 H e n c e , t h e s o l u t i o n i s 1 3 x 1 .

2. Solve: x 2 x 1 0

Sol. G i v e n t h a t | x 2 | 1 | x 2 | 2 0 P u t | x 2 | = y y 1 y + 2 0 y 1 > 0 , y 2 < 0 y > 1 , y < 2 1 < y < 2 1 < | x 2 | < 2 1 < | x 2 | , | x 2 | < 2 x 2 < 1 o r x 2 > 1 a n d 2 < x 2 < 2 x < 1 o r x > 3 a n d 2 + 2 < x < 2 + 2 x < 1 o r x > 3 a n d 0 < x < 4 H e n c e , t h e s o l u t i o n i s ( 0 , 1 ) ( 3 , 4 ) .
Q&A Icon
Commonly asked questions
Q:  

A company manufactures cassettes. Its cost and revenue functions are C(x)=26,000+30xandR(x)=43x, where x is the number of cassettes produced and sold in a week? How many cassettes must be sold by the company to realize some profit?  

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

Giventhat:Costfunction,C(x)=26,000+30x a n d r e v e n u e f u n c t i o n R ( x ) = 4 3 x N o w f o r p r o f i t P ( x ) , R ( x ) > C ( x ) 4 3 x > 2 6 0 0 0 + 3 0 x 2 6 0 0 0 + 3 0 x < 4 3 x 3 0 x 4 3 x < 2 6 0 0 0 1 3 x < 2 6 0 0 0 1 3 x > 2 6 0 0 0 x > 2 0 0 0 H e n c e , n u m b e r o f c a s s e t t e s t o b e m a n u f a c t u r e d f o r s o m e p r o f i t m u s t b e m o r e t h a n 2 0 0 0 .

Q:  

The water acidity in a pool is considered normal when the average pH reading of three daily measurements is between 8.2 and 8.5. If the first two pH readings are   8 . 4 8 and 8 . 3 5 , find the range of pH values for the third reading that will result in the acidity level being normal.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t t h e t h i r d p H v a l u e b e x . G i v e n t h a t f i r s t p H v a l u e = 8 . 4 8 andsecondpHvalue=8.35 A v e r a g e v a l u e o f p H = 8 . 4 8 + 8 . 3 5 + x 3 B u t a v e r a g e v a l u e o f p H l i e s b e t w e e n 8 . 2 a n d 8 . 5 8 . 2 < 8 . 4 8 + 8 . 3 5 + x 3 < 8 . 5 2 4 . 6 < 1 6 . 8 3 + x < 2 5 . 5 2 4 . 6 1 6 . 8 3 < x < 2 5 . 5 1 6 . 8 3 7 . 7 7 < x < 8 . 6 7 H e n c e , t h e t h i r d p H v a l u e l i e s b e t w e e n 7 . 7 7 a n d 8 . 6 7 .

Q:  

A solution of 9% acid is to be diluted by adding 3% acid solution to it. The resulting mixture is to be more than 5% but less than 7% acid. If there are 460 liters of the 9% solution, how many liters of the 3% solution will have to be added?

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t x l i t r e s o f 3 % s o l u t i o n b e a d d e d t o 4 6 0 l i t r e s o f 9 % . T o t a l a m o u n t o f m i x t u r e = ( 4 6 0 + x ) l i t r e s G i v e n t h a t t h e a c i d c o n t e n t s i n t h e r e s u l t i n g m i x t u r e i s m o r e t h a n 5 % b u t l e s s t h a n 7 % a c i d . 5 % o f ( 4 6 0 + x ) < 4 6 0 × 9 1 0 0 + 3 1 0 0 × x < 7 % o f ( 4 6 0 + x ) 5 1 0 0 ( 4 6 0 + x ) < 4 1 4 0 + 3 x 1 0 0 < 7 1 0 0 ( 4 6 0 + x ) 5 ( 4 6 0 + x ) < 4 1 4 0 + 3 x < 7 ( 4 6 0 + x ) 2 3 0 0 + 5 x < 4 1 4 0 + 3 x < 3 2 2 0 + 7 x 2 3 0 0 + 5 x < 4 1 4 0 + 3 x a n d 4 1 4 0 + 3 x < 3 2 2 0 + 7 x 5 x 3 x < 4 1 4 0 2 3 0 0 a n d 3 x 7 x < 3 2 2 0 4 1 4 0 2 x < 1 8 4 0 a n d 4 x < 9 2 0 x < 1 8 4 0 2 a n d 4 x > 9 2 0 x < 9 2 0 a n d x > 9 2 0 4 x > 2 3 0 H e n c e , t h e r e q u i r e d a m o u n t o f a c i d s o l u t i o n i s m o r e t h a n 2 3 0 l i t r e s a n d l e s s t h a n 9 2 0 l i t r e s .

Q:  

A solution is to be kept between   4 0 C and 4 5 C . What is the range of temperature in degrees Fahrenheit if the conversion formula is F = 9 5 C + 3 2 ?

             

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t t h e r a n g e o f t e m p e r a t u r e o f t h e s o l u t i o n i s 4 0 0 C a n d 4 5 0 C F o r m u l a o f c o n v e r s a t i o n i s F = 9 5 0 C + 3 2 0 F 3 2 0 = 9 5 0 C 0 C = 5 9 ( F 3 2 0 ) 4 0 0 < 0 C < 4 5 0 4 0 0 < 5 9 ( F 3 2 0 ) < 4 5 0 4 0 0 × 9 5 < F 3 2 0 < 4 5 0 × 9 5 7 2 0 < F 3 2 0 < 8 1 0 7 2 0 + 3 2 0 < F < 8 1 0 + 3 2 0 1 0 4 0 < F < 1 1 3 0 H e n c e , t h e r e q u i r e d r a n g e i s 1 0 4 0 F t o 1 1 3 0 F .

Q:  

Solve: 4x6and3x+11,(x>0)

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t 4 x + 1 3 6 x + 1 , x > 0 4 3 ( x + 1 ) 6 4 3 x + 3 6 4 3 3 x 6 3 1 3 x 3 1 3 x 1 H e n c e , t h e s o l u t i o n i s 1 3 x 1 .

Q:  

Solve: x 2 x 1 0

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t | x 2 | 1 | x 2 | 2 0 P u t | x 2 | = y y 1 y + 2 0 y 1 > 0 , y 2 < 0 y > 1 , y < 2 1 < y < 2 1 < | x 2 | < 2 1 < | x 2 | , | x 2 | < 2 x 2 < 1 o r x 2 > 1 a n d 2 < x 2 < 2 x < 1 o r x > 3 a n d 2 + 2 < x < 2 + 2 x < 1 o r x > 3 a n d 0 < x < 4 H e n c e , t h e s o l u t i o n i s ( 0 , 1 ) ( 3 , 4 ) .

Q:  

Solve: 1 x 3 1 2

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t 1 | x | 3 1 2 | x | 3 2 [ ? 1 x < 1 y x > y ] | x | 5 | x | 5 o r | x | 5 S o , x ( , 5 ] [ 5 , ) ( i ) H e r e , | x | 3 0 | x | 3 < 0 o r | x | 3 > 0 | x | < 3 o r | x | > 3 3 < x < 3 o r x < 3 o r x > 3 ( i i ) F r o m i n e q n . ( i ) a n d ( i i ) w e g e t x ( , 5 ] ( 3 , 3 ) [ 5 , )

Q:  

Solve: | x 1 | 5 , x 2

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t | x 1 | 5 a n d | x | 2 5 x 1 5 a n d x 2 o r x 2 5 + 1 x 5 + 1 a n d x 2 o r x 2 4 x 6 a n d x 2 o r x 2 H e n c e x < [ 4 , 2 ] [ 2 , 6 ]

Q:  

Solve: 5 2 x 3 4 9

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t 5 2 3 x 4 9 2 0 2 3 x 3 6 2 2 3 x 3 4 2 2 3 x 3 4 2 2 3 x 3 4 3 H e n c e x [ 3 4 3 , 2 2 3 ]

Q:  

Solve: 4 x + 3 2 x + 1 7 , 3 x 5 < 2

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t 4 x + 3 2 x + 1 7 ( i ) 3 x 5 < 2 ( i i ) F r o m e q n . ( i ) w e g e t 4 x + 3 2 x + 1 7 4 x 2 x 1 7 3 2 x 1 4 x 7 F r o m e q n . ( i i ) w e g e t 3 x 5 < 2 3 x < 3 x < 1 W e s e t t h a t t h e s o l u t i o n x 7 a n d x < 1 i s n o t p o s s i b l e . H e n c e t h e r e w i l l b e n o s o l u t i o n o f x .

Q:  

The longest side of a triangle is twice the shortest side, and the third side is 2 longer than the shortest side. If the perimeter of the triangle is more than 166, then find the minimum length of the shortest side.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t t h e l e n g t h o f t h e s h o r t e s t s i d e b e x c m L e n g t h o f t h e l o n g e s t s i d e = 2 x c m a n d l e n g t h o f t h e t h i r d s i d e b e ( x + 2 ) c m P e r i m e t e r o f t h e t r i a n g l e = x c m + 2 x c m + ( x + 2 ) c m = ( 4 x + 2 ) c m A s p e r t h e c o n d i t i o n o f t h e q u e s t i o n , P e r i m e t e r > 1 6 6 c m 4 x + 2 > 1 6 6 4 x > 1 6 6 2 4 x > 1 6 4 x > 4 1 c m Hence,theminimumlengthoftheshortestsideofthetriangleis41cm.

Q:  

In drilling the world’s deepest hole, it was found that the temperature T in degrees Celsius, x below the earth’s surface, was given by T = 3 0 + 2 5 ( x 3 ) , 3 x 1 5 . At what depth will the temperature be between   1 5 5 C and 2 0 5 C ? 

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t , T e m p e r a t u r e T = 3 0 0 + 2 5 0 ( x 3 ) , 3 x 1 5 R a n g e o f t h e t e m p e r a t u r e i s 1 5 5 0 C t o 2 0 5 0 C 1 5 5 0 < T < 2 0 5 0 1 5 5 0 < 3 0 0 + 2 5 0 ( x 3 ) < 2 0 5 0 1 2 5 0 < 2 5 0 ( x 3 ) < 1 7 5 0 1 2 5 2 5 < ( x 3 ) < 1 7 5 2 5 5 < x 3 < 7 8 < x < 1 0 H e n c e , t h e r e q u i r e d t e m p e r a t u r e a t t h e d e p t h f r o m 8 k m t o 1 0 k m l i e s b e t w e e n 1 5 5 0 C a n d 2 0 5 0 C .

Maths NCERT Exemplar Solutions Class 11th Chapter Six Logo

Linear Inequalities Long Answer Type Questions

1. Solve the following system of inequalities: 2 x + 1 7 x 1 > 5 , x + 7 x 8 > 2

Sol. L e t u s t a k e t h e i n e q u a t i o n 2 x + 1 7 x 1 > 5 2 x + 1 7 x 1 5 > 0 2 x + 1 5 ( 7 x 1 ) 7 x 1 > 0 2 x + 1 3 5 x + 5 7 x 1 > 0 3 3 x + 6 7 x 1 > 0 3 3 x 6 7 x 1 < 0 S o , x ( 1 7 , 2 1 1 ) ( i ) N o w f r o m second i n e q u a l i t y , w e h a v e x + 7 x 8 > 2 x + 7 x 8 2 > 0 x + 7 2 x + 1 6 x 8 > 0 x + 2 3 x 8 > 0 x 2 3 x 8 < 0 S o , x ( 8 , 2 3 ) ( i i ) N o w n o t h i n g i s c o m m o n t o t h e t w o v a l u e s o f x i . e . , n u l l s e t . H e n c e , t h e g i v e n i n e q u a l i t i e s h a s n o s o l u t i o n .
2. Find the linear inequalities for which the shaded region in the given figure is the solution set.

Sol.

Sol. L e t u s c o n s i d e r t h e l i n e a r e q u a t i o n 3 x + 2 y = 4 8 . W e o b s e r v e t h a t t h e s h a d e d r e g i o n a n d t h e o r i g i n b o t h o n t h e s a m e s i d e o f t h e g r a p h o f t h e l i n e a n d ( 0 , 0 ) s a t i s f y t h e constraint 3 x + 3 y 4 8 . S i m i l a r l y , w e o b s e r v e t h a t t h e s h a d e d r e g i o n a n d t h e o r i g i n b o t h o n t h e s a m e s i d e o f t h e g r a p h o f t h e l i n e a n d ( 0 , 0 ) s a t i s f y t h e constraint x + y 2 0 . W e s e e t h a t t h e s h a d e d r e g i o n i s i n t h e f i r s t q u a d r a n t w h e r e x 0 a n d y 0 H e n c e , t h e r e q u i r e d l i n e a r i n e q u a l i t i e s a r e 3 x + 3 y 4 8 , x + y 2 0 , x 0 a n d y 0 .

Q&A Icon
Commonly asked questions
Q:  

Solve the following system of inequalities: 2 x + 1 7 x 1 > 5 , x + 7 x 8 > 2

A: 

This is a long answer type question as classified in NCERT Exemplar

L e t u s t a k e t h e i n e q u a t i o n 2 x + 1 7 x 1 > 5 2 x + 1 7 x 1 5 > 0 2 x + 1 5 ( 7 x 1 ) 7 x 1 > 0 2 x + 1 3 5 x + 5 7 x 1 > 0 3 3 x + 6 7 x 1 > 0 3 3 x 6 7 x 1 < 0 S o , x ( 1 7 , 2 1 1 ) ( i ) Nowfromsecondinequality,wehave x + 7 x 8 > 2 x + 7 x 8 2 > 0 x + 7 2 x + 1 6 x 8 > 0 x + 2 3 x 8 > 0 x 2 3 x 8 < 0 S o , x ( 8 , 2 3 ) ( i i ) N o w n o t h i n g i s c o m m o n t o t h e t w o v a l u e s o f x i . e . , n u l l s e t . H e n c e , t h e g i v e n i n e q u a l i t i e s h a s n o s o l u t i o n .

Q:  

Find the linear inequalities for which the shaded region in the given figure is the solution set.

A: 

This is a long answer type question as classified in NCERT Exemplar

L e t u s c o n s i d e r t h e l i n e a r e q u a t i o n 3 x + 2 y = 4 8 . W e o b s e r v e t h a t t h e s h a d e d r e g i o n a n d t h e originbothonthesamesideofthegraphofthelineand(0,0)satisfytheconstraint3x+3y48. S i m i l a r l y , w e o b s e r v e t h a t t h e s h a d e d r e g i o n a n d t h e o r i g i n b o t h o n t h e s a m e s i d e o f t h e g r a p h ofthelineand(0,0)satisfytheconstraintx+y20. W e s e e t h a t t h e s h a d e d r e g i o n i s i n t h e f i r s t q u a d r a n t w h e r e x 0 a n d y 0 H e n c e , t h e r e q u i r e d l i n e a r i n e q u a l i t i e s a r e 3 x + 3 y 4 8 , x + y 2 0 , x 0 a n d y 0 .
Q:  

Find the linear inequalities for which the shaded region in the given figure is the solution set.

A: 

This is a long answer type question as classified in NCERT Exemplar

L e t u s f i r s t c o n s i d e r t h e l i n e x + y = 4 W e o b s e r v e t h a t t h e s h a d e d r e g i o n a n d t h e o r i g i n ( 0 , 0 ) b o t h o n t h e o p p o s i t e s i d e a n d ( 0 , 0 ) satisfytheconstraintx+y4. S o , x + y 4 i s t h e l i n e a r i n e q u a l i t y . N o w , t a k e t h e l i n e a r e q u a t i o n x + y = 8 . I n t h i s c a s e , t h e s h a d e d r e g i o n a n d t h e o r i g i n ( 0 , 0 ) b o t h l i e o n t h e s a m e s i d e o f t h e g r a p h and(0,0)satisfytheconstraintx+y8. S o , x + y 4 i s a n o t h e r l i n e a r i n e q u a l i t y . C o n s i d e r , x = 5 . I t i s c l e a r t h a t t h e s h a d e d a r e a l i e s t o w a r d s t h e o r i g i n . S o , x 5 i s t h e constraintsandsimilarlyy5isalsotheconstraints.Wealsoobservethattheshadedregion l i e s i n f i r s t q u a d r a n t , S o x 0 a n d y 0 . H e n c e , t h e r e q u i r e d l i n e a r i n e q u a l i t i e s a r e x + y 4 , x + y 8 , x 5 , y 5 , x 0 a n d y 0 .

Q:  

Show that the following system of linear inequalities has no solution: x + 2 y 3 , 3 x + 4 y 1 2 , x 0 , y 1 .      

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

Maths NCERT Exemplar Solutions Class 11th Chapter Six Logo

Linear Inequalities Objective Type Questions

1. If x < 5 , then

(a) x < 5     

(b) x 5    

(c) x > 5     

(d) x 5      

Sol. I f x < 5 t h e n x > 5 H e r e , t h e c o r r e c t o p t i o n i s ( c ) .

2. Given that x , y and b are real numbers and x < y , b < 0 , then

(a) x b < y b

(b) x b y b       

(c) x b > y b        

(d) x b y b        

Sol. G i v e n t h a t x < y , b < 0 x b > y b , b < 0 H e r e , t h e c o r r e c t o p t i o n i s ( c ) .
Q&A Icon
Commonly asked questions
Q:  

If x < 5 , then

(a) x < 5     

(b) x 5    

(c) x > 5     

(d) x 5      

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

I f x < 5 t h e n x > 5 H e r e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

Given that x , y and b are real numbers and x < y , b < 0 , then

(a) x b < y b

(b) x b y b       

(c) x b > y b        

(d) x b y b        

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t x < y , b < 0 x b > y b , b < 0 H e r e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If x  is a real number and ? x ? < 3 , then

(a) x 3    

(b) 3 < x < 3     

(c) x 3     

(d) 3 x 3     

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t | x | < 3 3 < x < 3 [ ? | x | < a a < x < a ] H e r e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Choose the correct option for x :

(a) x ( , 7 2 )   

(b) x ( , 7 2 ]     

(c) x [ 7 2 , )   

(d) x ( 7 2 , )    

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

T h e g i v e n g r a p h r e p r e s e n t s a l l t h e v a l u e s o f x l e s s t h a n 7 2 o n t h e r e a l n u m b e r l i n e . S o , x ( , 7 2 ) H e r e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Choose the correct option for x :

(a) x ( , 2 )   

(b) x ( , 2 ]    

(c) x ( 2 , ]    

(d) x [ 2 , )    

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

T h e g i v e n g r a p h r e p r e s e n t s a l l r e a l v a l u e s o f x l e s s t h a n a n d e q u a l t o 2 . S o , x ( , 2 ] H e r e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If 3 x + 1 7 < 1 3 , then

(a) x ( 1 0 , )                

(b) x [ 1 0 , )               

(c) x ( , 1 0 ]                

(d) x [ 1 0 , 1 0 )              

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t 3 x + 1 7 < 1 3 3 x < 1 7 1 3 3 x < 3 0 3 x > 3 0 x > 1 0 x ( 1 0 , ) H e r e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If   b > 0 and ? x ? > b , then

(a) x ( b , )    

(b) x ( , b )     

(c) x ( b , b )     

(d) x ( , b ) ( b , )     

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t | x | > b , b > 0 x < b o r x > b x ( , b ) ( b , ) H e r e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If x 1 > 5 , then

(a) x ( 4 , 6 )    

(b) x [ 4 , 6 ]     

(c) x ( , 4 ) ( 6 , )    

(d) x ( , 4 ) [ 6 , )    

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t | x 1 | > 5 ( x 1 ) < 5 o r ( x 1 ) > 5 x < 5 + 1 o r x > 5 + 1 x < 4 o r x > 6 x ( , 4 ) ( 6 , ) H e r e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If x + 2 9 , then

(a) x ( 7 , 1 1 )   

(b) x [ 1 1 , 7 ]   

(c) x ( , 7 ) ( 1 1 , )     

(d) x ( , 7 ) [ 1 1 , )    

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t | x + 2 | 9 9 x + 2 9 [ ? | x | a a x a ] 9 2 x 9 2 1 1 x 7 x [ 1 1 , 7 ] H e r e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The inequality representing the following graph is:

Fig. 6.7

(a) ? x ? < 5   

(b) ? x ? 5     

(c) ? x ? > 5     

(d) ? x ? 5     

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

T h e g i v e n g r a p h r e p r e s e n t s x > 5 a n d x < 5 C o m b i n i n g t h e t w o i n e q u a l i t i e s | x | < 5 H e r e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Choose the correct option for x :

(a) x ( , 5 )   

(b) x ( , 5 ]     

(c) x [ 5 , )   

(d) x ( 5 , )  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

T h e g i v e n g r a p h r e p r e s e n t s a l l v a l u e s o f x g r e a t e r t h a n 5 i n c l u d i n g 5 o n t h e r e a l n u m b e r l i n e S o , x ( 5 , ) H e r e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

Choose the correct option for x :

(a) x ( 9 2 , )    

(b) x [ 9 2 , )   

(c) x ( , 9 2 ]    

(d) x ( , 9 2 )     

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

T h e g i v e n g r a p h h a s a l l r e a l v a l u e s o f x g r e a t e r t h a n a n d e q u a l t o 9 2 . S o , x 9 2 x [ 9 2 , ) H e r e , t h e c o r r e c t o p t i o n i s ( b ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Six Logo

Linear Inequalities True or False Type Questions

zzzzzzzz

Q&A Icon
Commonly asked questions
Q:  

(i) If x<y and b<0 , then xb>yb.

(ii) If xy>0 , then x>0 and y<0 .

(iii) If xy>0 , then x<0 and y<0 .

(iv) If xy<0 , then x<0 and y<0 .

(v) If x<5 and x<2 , then x(,5) .

(vi) If x<5 and x>2 , then x(5,2) .

(vii) If x>2 and x<9 , then x(2,9) .

(viii) If ?x?>5 , then x(,5)(5,).

(ix) If ?x?4 , then x[4,4].

(x) Graph of x<3 corresponds to Fig 6.12.

(xi) Graph of x0 corresponds to Fig 6.13.

(xii) Graph of y0 corresponds to Fig 6.14.

(xiii) Solution set of x0 and y0 corresponds to Fig 6.15.

(xiv) Solution set of x0 and y1 corresponds to Fig 6.16.

(xv) Solution set of x+y0 corresponds to Fig 6.17.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

( i ) I f x < y a n d b < 0 x b > y b H e n c e , s t a t e m e n t ( i ) i s F a l s e . ( i i ) I f x , y > 0 t h e n x > 0 , y > 0 o r x < 0 , y < 0 H e n c e , s t a t e m e n t ( i i ) i s F a l s e . ( i i i ) I f x y > 0 t h e n x < 0 , a n d y < 0 H e n c e , s t a t e m e n t ( i i i ) i s T r u e . ( i v ) I f x y < 0 t h e n x < 0 , y > 0 o r x > 0 , y < 0 H e n c e , s t a t e m e n t ( i v ) i s F a l s e . ( v ) I f x < 5 a n d x < 2 x ( , 5 ) H e n c e , s t a t e m e n t ( v ) i s T r u e . ( v i ) I f x < 5 a n d x > 2 t h e n x h a s n o v a l u e . H e n c e , s t a t e m e n t ( v i ) i s F a l s e . ( v i i ) I f x > 2 a n d x < 9 x ( 2 , 9 ) H e n c e , s t a t e m e n t ( v i i ) i s T r u e . ( v i i i ) I f | x | > 5 t h e n x < 5 o r x > 5 x ( , 5 ) ( 5 , ) H e n c e , s t a t e m e n t ( v i i i ) i s F a l s e . ( i x ) I f | x | 4 t h e n 4 x 4 x [ 4 , 4 ] H e n c e , s t a t e m e n t ( i x ) i s T r u e . ( x ) T h e g i v e n g r a p h r e p r e s e n t s x 3 H e n c e , s t a t e m e n t ( x ) i s F a l s e . ( x i ) T h e g i v e n g r a p h r e p r e s e n t s x 0 H e n c e , s t a t e m e n t ( x i ) i s T r u e . ( x i i ) T h e g i v e n g r a p h r e p r e s e n t s y 0 H e n c e , s t a t e m e n t ( x i i ) i s &thins

Maths NCERT Exemplar Solutions Class 11th Chapter Six Logo

Linear Inequalities Fill in the blanks Type Questions

qqqqqqqqqqq

Q&A Icon
Commonly asked questions
Q:  

(i) If 4x12 , then x3 .

(ii) If 34x3, then x4 .

(iii) If 2x+2>0, then x2 .

(iv) If x>5 , then 4x20 .

(v) If x>y and z<0 , then xzyz .

(vi) If p>0 and q<0 , then pqp .

(vii) If x+2>5 , then x7 or x3 .

(viii)If 2x+19 , then x4 .

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

( i ) 4 x 1 2 x 3 H e n c e , t h e f i l l e r i s ( ) ( i i ) I f 3 4 x 3 x 3 x × 4 3 x 4 H e n c e , t h e f i l l e r i s ( ) ( i i i ) I f 2 x + 2 > 0 x > 2 H e n c e , t h e f i l l e r i s ( > ) ( i v ) I f x > 5 4 x > 2 0 H e n c e , t h e f i l l e r i s ( > ) ( v ) I f x > y a n d z < 0 , t h e n x z < y z x z > y z H e n c e , t h e f i l l e r i s ( > ) ( v i ) I f p > 0 a n d q < 0 , t h e n p q > p H e n c e , t h e f i l l e r i s ( > ) ( v i i ) I f | x + 2 | > 5 t h e n x + 2 < 5 o r x + 2 > 5 x < 5 2 o r x > 5 2 x < 7 o r x > 3 S o , x ( , 7 ) ( 3 , ) H e n c e , t h e f i l l e r i s ( < ) o r ( > ) ( v i i i ) I f 2 x + 1 9 t h e n 2 x 9 1 2 x 8 2 x 8 x 4 H e n c e , t h e f i l l e r i s ( )

Try these practice questions

Q1:

If |x| < 1, |y| < 1 and x ≠ y, then the sum to infinity of the following series (x+y) + (x²+xy+y²) + (x³+x²y+xy²+y³) + ... is

View Full Question

Maths NCERT Exemplar Solutions Class 11th Chapter Six Logo

JEE Mains 2020

JEE Mains 2020

Try these practice questions

Q1:

Let α > 0, β > 0 be such that α³ + β² = 4. If the maximum value of the term independent of x in the binomial expansion of (αx¹/⁹ + βx⁻¹/⁶)¹⁰ is 10k, then k is equal to

View Full Question

Q2:

Let P(h,k) be a point on the curve y = x² + 7x + 2, nearest to the line, y = 3x - 3. Then the equation of the normal to the curve at P is

View Full Question

Q3:

The value of ((1+sin(2π/9)+icos(2π/9))/(1+sin(2π/9)-icos(2π/9)))³ is

View Full Question

Q&A Icon
Commonly asked questions
Q:  

If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is.

Read more
A: 

MOTHER
1? E
2? H
3? M
4? O
5? R
6? T
So position of word MOTHER in dictionary
2*5!+2*4!+3*3!+2!+1
=240+48+18+2+1
=309

Q:  

Let a, b and c be three unit vectors such that |a-b|²+|a-c|²=8. Then |a+2b|²+|a+2c|² is equal to.

A: 

|a|=|b|=|c|=1
|a-b|²+|a-c|²=8
⇒|a|²+|b|²-2a.b+|a|²+|c|²-2a.c=8
⇒4-2 (a.b+a.c)=8
a.b+a.c=-2
|a+2b|²+|a+2c
=|a|²+4|b|²+4a.b+|a|²+4|c|²+4a.c
=10+4 (a.b+a.c)
=10-8=2

Q:  

If lim(x→1) (x+x²+x³+...+xⁿ-n)/(x-1) = 820, (n∈N) then the value of n is equal to.

A: 

lim (x→1) (x+x²+.+x? -n)/ (x-1) = 820
⇒ lim (x→1) (x-1)/ (x-1)+ (x²-1)/ (x-1)+.+ (x? -1)/ (x-1) = 820
⇒ 1+2+.+n = 820
⇒ n (n+1)=2×820
⇒ n (n+1)=40×41
Since n∈N, so n=40

Q:  

The number of integral values of k for which the line, 3x+4y=k intersects the circle, x²+y²-2x-4y+4=0 at two distinct points is.

Read more
A: 

Circle x²+y²-2x-4y+4=0
⇒ (x-1)²+ (y-2)²=1
Centre: (1,2) radius=1
line 3x+4y-k=0 intersects the circle at two distinct points.
⇒ distance of centre from the line < radius
⇒ |3×1+4×2-k|/√ (3²+4²) < 1
⇒ |11-k|<5
⇒ 6⇒ k∈ {7,8,9, .,15} since k∈I
Number of K is 9.

Q:  

The integral ∫₀² ||x-1|-x|dx is equal to [numerical value].1|-x|dx is equal to.

A: 

∫? ² |x-1|-x|dx
Let f (x)=|x-1|-x|
= {|1-2x|, x≤1; 1, x≥1}
A = 1/2+1=3/2
∫? ¹/² (1-2x)dx+∫? /? ¹ (2x-1)+∫? ²1dx
= [x-x²]? ¹/²+ [x]? ² = 3/21dx
= [x-x²]? ¹/²+ [x]? ² = 3/2

Maths NCERT Exemplar Solutions Class 11th Chapter Six Logo

JEE Mains 2021

JEE Mains 2021

Try these practice questions

Q1:

If the equation a|z|² + α'z + αz' + d = 0 represents a circle where a, d are real constants, then which of the following condition is correct?

View Full Question

Q2:

Let A + 2B = [, [6, -3, 3], [-5, 3, 1]] and 2A - B = [[2, -1, 5], [2, -1, 6],]. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) – Tr(B) has value equal to:

Q3:

The real function f(x) = arccosec(x) / √(x - [x]), where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to:

Q&A Icon
Commonly asked questions
Q:  

If f(x) = ∫ [5x⁸ + 7x⁶] / [(x⁷ + x² + 1)²] dx, (x > 0), f(0) = 0 and f(1) = 1/K, then the value of K is ______.

Read more
A: 

f (x) = ∫ (5x? + 7x? ) / (x² + 1 + 2x? ) dx seems to have a typo in the denominator. Based on the solution, the denominator is (x? + 1/x? + 2)² or similar. Let's follow the solution's steps.
It seems the denominator is (x? (2 + 1/x? + 1/x? )² = x¹? (2 + 1/x? + 1/x? )².
f (x) = ∫ (5x? + 7x? ) / (x¹? (2 + 1/x? + 1/x? )²) dx

The solution simplifies the integrand to:
f (x) = ∫ (5/x? + 7/x? ) / (2 + 1/x? + 1/x? )² dx

Let t = 2 + 1/x? + 1/x?
dt = (-5/x? - 7/x? ) dx = - (5/x? + 7/x? ) dx.

The integral becomes:
f (x) = ∫ -dt / t² = 1/t + C.
f (x) = 1 / (2 + 1/x? + 1/x? ) + C.

Given f (0)=0, this form has a division by zero. Let's re-examine the original problem. If x≥0, as x→0, the integrand goes to 0. So f (0)=0 implies C=0. Let's assume the function is defined as the limit.
However, f (x) = x? / (2x? + x² + 1) + C is a more likely result.

Given f (1) = 1/k:
f (1) = 1 / (2 + 1 + 1) = 1/4.
So, 1/k = 1/4 => k = 4.

Q:  

The mean age of 25 teachers in a school is 40 years. A teacher retires at the age of 60 years and a new teacher is appointed in his place. If the mean age of the teachers in this school now is 39 years, then the age (in years) of the newly appointed teacher is: ______.

Read more
A: 

Initial mean of 25 observations is 40.
X? = (Σx? )/25 = 40 => Σx? = 25 * 40 = 1000.

A teacher of age 60 retires.
The new sum of ages for the remaining 24 people is 1000 - 60 = 940.

A new teacher of age x joins.
The new sum for 25 people is 940 + x.
The new mean is 39.
(940 + x) / 25 = 39
940 + x = 39 * 25 = 975
x = 975 - 940 = 35.
The new teacher's age is 35.

Q:  

The missing value in the following figure is ______. (A diagram with numbers in a circular pattern is shown).

Read more
A: 

1 = (2-1)¹ (The n is likely 1).
3? = (7-4)³ (This seems to be a pattern matching (a-b)^c).
4²? = (12-8)? ! = 4²?
The blank space must be (5-3)² = 2² = 4.

Q:  

The equation of the planes parallel to the plane x - 2y + 2z - 3 = 0 which are at unit distance from the point (1,2,3) is ax + by + cz + d = 0. If (b-d) = K(c-a), then the positive value of K is ______.

Read more
A: 

The equation of a plane parallel to x - 2y + 2z - 3 = 0 is x - 2y + 2z + λ = 0.
The distance from the point (1, 2, 3) to this plane is 1.
|1 - 2 (2) + 2 (3) + λ| / √ (1² + (-2)² + 2²) = 1
|1 - 4 + 6 + λ| / √9 = 1
|3 + λ| / 3 = 1
|3 + λ| = 3
3 + λ = 3 or 3 + λ = -3
λ = 0 or λ = -6.

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Six Exam

Student Forum

chatAnything you would want to ask experts?
Write here...