Maths NCERT Exemplar Solutions Class 11th Chapter Five: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Five 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Five )

Raj Pandey
Updated on Aug 28, 2025 14:22 IST

By Raj Pandey

Table of content
  • Complex Numbers and Quadratic Equations Short Answer Type Questions
  • Complex Numbers and Quadratic Equations Long Answer Type Questions
  • Complex Numbers and Quadratic Equations Other Questions
  • Complex Numbers and Quadratic Equations Objective Type Questions
  • JEE MAINS 2 April 2025
  • qqqqqqqqqqq
  • pppppppppppppppppp
  • JEE Mains 2021
  • JEE Mains 2020
View More
Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Short Answer Type Questions

1. For a positive integer n , find the value of ( 1 i ) n 1 1 i n .

Sol. W e h a v e ( 1 i ) n ( 1 1 i ) n = [ ( 1 i ) ( 1 1 i ) ] n = [ ( 1 i ) ( 1 1 i × i i ) ] n = [ ( 1 i ) ( 1 i i 2 ) ] n = [ ( 1 i ) ( 1 + i ) ] n [ i 2 = 1 ] = [ 1 i 2 ] n = [ 1 + 1 ] n = 2 n H e n c e , ( 1 i ) n ( 1 1 i ) n = 2 n .

2. Evaluate n = 1 ( 1 + i ) 3 , where n .

Sol. W e h a v e n = 1 1 3 ( i n + i n + 1 ) = ( i + i 2 ) + ( i 2 + i 3 ) + ( i 3 + i 4 ) + ( i 4 + i 5 ) + ( i 5 + i 6 ) + ( i 6 + i 7 ) + ( i 7 + i 8 ) + ( i 8 + i 9 ) + ( i 9 + i 1 0 ) ( i 1 0 + i 1 1 ) + ( i 1 1 + i 1 2 ) + ( i 1 2 + i 1 3 ) + ( i 1 3 + i 1 4 ) = i + 2 ( i 2 + i 3 + i 4 + i 5 + i 6 + i 7 + i 8 + i 9 + i 1 0 + i 1 1 + i 1 2 + i 1 3 ) + i 1 4 = i + 2 [ 1 i + 1 + i 1 i + 1 + i 1 i + 1 + i ] + ( 1 ) = i + 2 ( 0 ) 1 1 + i H e n c e , n = 1 1 3 ( i n + i n + 1 ) = 1 + i .
Q&A Icon
Commonly asked questions
Q:  

For a positive integer n , find the value of ( 1 i ) n 1 1 i n .

A: 

This is a short answer type question as classified in NCERT Exemplar

W e h a v e ( 1 i ) n ( 1 1 i ) n = [ ( 1 i ) ( 1 1 i ) ] n = [ ( 1 i ) ( 1 1 i × i i ) ] n = [ ( 1 i ) ( 1 i i 2 ) ] n = [ ( 1 i ) ( 1 + i ) ] n [ ? i 2 = 1 ] = [ 1 i 2 ] n = [ 1 + 1 ] n = 2 n H e n c e , ( 1 i ) n ( 1 1 i ) n = 2 n .

Q:  

Evaluate n = 1 ( 1 + i ) 3 , where n ? .

A: 

This is a short answer type question as classified in NCERT Exemplar

W e h a v e n = 1 1 3 ( i n + i n + 1 ) = ( i + i 2 ) + ( i 2 + i 3 ) + ( i 3 + i 4 ) + ( i 4 + i 5 ) + ( i 5 + i 6 ) + ( i 6 + i 7 ) + ( i 7 + i 8 ) + ( i 8 + i 9 ) + ( i 9 + i 1 0 ) ( i 1 0 + i 1 1 ) + ( i 1 1 + i 1 2 ) + ( i 1 2 + i 1 3 ) + ( i 1 3 + i 1 4 ) = i + 2 ( i 2 + i 3 + i 4 + i 5 + i 6 + i 7 + i 8 + i 9 + i 1 0 + i 1 1 + i 1 2 + i 1 3 ) + i 1 4 = i + 2 [ 1 i + 1 + i 1 i + 1 + i 1 i + 1 + i ] + ( 1 ) = i + 2 ( 0 ) 1 1 + i H e n c e , n = 1 1 3 ( i n + i n + 1 ) = 1 + i .

Q:  

If ( 1 + i ) 3 1 i 3 ( 1 i ) 3 1 + i 3 = x + i y , then find ( x , y ) .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

W e h a v e ( 1 + i 1 i ) 3 ( 1 i 1 + i ) 3 = x + i y [ 1 + i 1 i × 1 + i 1 + i ] 3 [ 1 i 1 + i × 1 i 1 i ] 3 = x + i y [ 1 + i 2 + 2 i 1 i 2 ] 3 [ 1 + i 2 2 i 1 i 2 ] 3 = x + i y [ 1 1 + 2 i 1 + 1 ] 3 [ 1 1 2 i 1 + 1 ] 3 = x + i y [ 2 i 2 ] 3 [ 2 i 2 ] 3 = x + i y ( i ) 3 ( i ) 3 = x + i y i 2 . i + i 2 . i = x + i y i i = x + i y 0 2 i = x + i y C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t x = 0 , y = 2 . H e n c e , ( x , y ) = ( 0 , 2 ) .

Q:  

If 1 + i 1 i = x + i y , then find the value of x + y .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

W e h a v e ( 1 + i ) 2 2 i = x + i y 1 + i 2 + 2 i 2 i = x + i y 1 1 + 2 i 2 i = x + i y 2 i 2 i = x + i y 2 i 2 i × 2 + i 2 + i = x + i y 4 i + 2 i 2 4 i 2 = x + i y 4 i 2 4 + 1 = x + i y [ ? i 2 = 1 ] 2 + 4 i 5 = x + i y 2 5 + 4 5 i = x + i y C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t x = 2 5 , y = 4 5 . H e n c e , x + y = 2 5 + 4 5 = 2 5 .

Q:  

If 1 i 1 0 0 1 + i = a + i b , then find ( a , b ) .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

W e h a v e ( 1 i 1 + i ) 1 0 0 = a + b i ( 1 i 1 + i × 1 i 1 i ) 1 0 0 = a + b i ( 1 + i 2 2 i 1 i 2 ) 1 0 0 = a + b i ( 1 1 2 i 1 + 1 ) 1 0 0 = a + b i ( 2 i 2 ) 1 0 0 = a + b i ( i ) 1 0 0 = a + b i i 1 0 0 = a + b i ( i 4 ) 2 5 = a + b i ( 1 ) 2 5 = a + b i 1 = a + b i 1 + 0 i = a + b i C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t a = 1 , b = 0 . H e n c e , ( a , b ) = ( 1 , 0 ) .

Q:  

If a = c o s θ + i s i n θ , find the value of 1 + a 1 a .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : a = c o s θ + i s i n θ 1 + a 1 a = 1 + c o s θ + i s i n θ 1 c o s θ i s i n θ = 1 + c o s θ + i s i n θ 1 c o s θ i s i n θ × 1 c o s θ + i s i n θ 1 c o s θ + i s i n θ = 1 c o s θ + i s i n θ + c o s θ c o s 2 θ + i s i n θ c o s θ + i s i n θ i s i n θ c o s θ + i 2 s i n 2 θ ( 1 c o s θ ) 2 i 2 s i n 2 θ = 1 + i s i n θ c o s 2 θ + i s i n θ s i n 2 θ 1 + c o s 2 θ 2 c o s θ + s i n 2 θ = s i n 2 θ + 2 i s i n θ s i n 2 θ 1 + 1 2 c o s θ = 2 i s i n θ 2 2 c o s θ = 2 i s i n θ 2 ( 1 c o s θ ) = i s i n θ 1 c o s θ = 2 s i n θ 2 c o s θ 2 . i 2 s i n 2 θ 2 = c o t θ 2 . i H e n c e , 1 + a 1 a = i . c o t θ 2 .

Q:  

If ( 1 + i ) z = ( 1 i ) z , then show that z = i z .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : ( 1 + i ) z = ( 1 i ) z ¯ z z ¯ = 1 i 1 + i = 1 i 1 + i × 1 i 1 i = 1 + i 2 2 i 1 i 2 = 1 1 2 i 1 + 1 = 2 i 2 = i z z ¯ = i z = i . z ¯ H e n c e p r o v e d .

Q:  

If z = x + i y , then show that ? z ? 2 + 2 ( z + z ) + b = 0 , where b ? , represents a circle.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : z = x + i y T o p r o v e : z z ¯ + 2 ( z + z ¯ ) + b = 0 ( x + i y ) ( x i y ) + 2 ( x + i y + x i y ) + b = 0 x 2 + y 2 2 ( x + x ) + b = 0 x 2 + y 2 4 x + b = 0 W h i c h r e p r e s e n t s a c i r c l e . H e n c e p r o v e d .

Q:  

If the real part of z + 2 z 1  is 4, then show that the locus of the point representing   z in the complex plane is a circle.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t z = x + i y z ¯ = x i y S o z ¯ + 2 z ¯ 1 = x i y + 2 x i y 1 = ( x + 2 ) i y ( x 1 ) i y × ( x 1 ) + i y ( x 1 ) + i y = ( x + 2 ) ( x 1 ) + ( x + 2 ) y i ( x 1 ) y i i 2 y 2 ( x 1 ) 2 i 2 y 2 = x 2 + 2 x x 2 + ( x + 2 x + 1 ) y i + y 2 ( x 1 ) 2 + y 2 = x 2 + y 2 + x 2 ( x 1 ) 2 + y 2 + 3 y ( x 1 ) 2 + y 2 i Realpart=4 x 2 + y 2 + x 2 ( x 1 ) 2 + y 2 = 4 x 2 + y 2 + x 2 = 4 [ ( x 1 ) 2 + y 2 ] x 2 + y 2 + x 2 = 4 [ x 2 + 1 2 x + y 2 ] x 2 + y 2 + x 2 = 4 x 2 + 4 8 x + 4 y 2 x 2 4 x 2 + y 2 4 y 2 + x + 8 x 2 4 = 0 3 x 2 3 y 2 + 9 x 6 = 0 x 2 + y 2 3 x + 2 = 0 W h i c h r e p r e s e n t s a c i r c l e . H e n c e , z l i e s o n a c i r c l e .

Q:  

Show that the complex number z , satisfying the condition arg(1z1+z)=π4 , lies on a circle.

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t z = x + i y G i v e n t h a t : a r g ( z 1 z + 1 ) = π 4 a r g ( z 1 ) a r g ( z + 1 ) = π 4 [ ? a r g ( z 1 ) a r g ( z 2 ) = a r g z 1 z 2 ] a r g ( x + i y 1 ) a r g ( x + i y + 1 ) = π 4 a r g [ ( x 1 ) + i y ] a r g [ ( x + 1 ) + i y ] = π 4 t a n 1 y x 1 t a n 1 y x + 1 = π 4 [ ? a r g ( x + y i ) = t a n 1 y x ] t a n 1 [ y x 1 y x + 1 1 + y x 1 × y x + 1 ] = π 4 x y + y x y + y x 2 1 + y 2 = t a n π 4 2 y x 2 + y 2 1 = 1 x 2 + y 2 1 = 2 y x 2 + y 2 2 y 1 = 0 w h i c h i s a c i r c l e . H e n c e , z l i e s o n a c i r c l e .

Q:  

Solve the equation  z = z ? + 1 + 2 i .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : | z | = z + 1 + 2 i L e t z = x + y i | z | = ( z + 1 ) + 2 i S q u a r i n g b o t h s i d e s | z | 2 = ( z + 1 ) 2 + 4 i 2 + 4 ( z + 1 ) i | z | 2 = | z | 2 + 1 + 2 z 4 + 4 ( z + 1 ) i 0 = 3 + 2 z + 4 ( z + 1 ) i 3 2 z 4 ( z + 1 ) i = 0 3 2 ( x + y i ) 4 ( x + y i + 1 ) i = 0 3 2 x 2 y i 4 x i 4 y i 2 4 i = 0 3 2 x + 4 y 2 y i 4 x i 4 i = 0 ( 3 2 x + 4 y ) i ( 2 y + 4 x + 4 ) = 0 3 2 x + 4 y = 0 2 x 4 y = 3 ( i ) 2 y + 4 x + 4 = 0 2 x + y = 2 ( i i ) S o l v i n g e q n . ( i ) a n d ( i i ) , w e g e t y = 1 a n d x = 1 2 H e n c e , t h e v a l u e o f z = x + y i = ( 1 2 i ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Long Answer Type Questions

1. If z ˉ + 1 = z + 2 ( 1 + i ) , then find z .

Sol. G i v e n t h a t : | z + 1 | = z + 2 ( 1 + i ) L e t z = x + i y S o , | x + i y + 1 | = ( x + i y ) + 2 ( 1 + i ) | ( x + 1 ) + i y | = x + i y + 2 + 2 i | ( x + 1 ) + i y | = ( x + 2 ) + ( y + 2 ) i ( x + 1 ) 2 + y 2 = ( x + 2 ) + ( y + 2 ) i [ | x + i y | = x 2 + y 2 ] S q u a r i n g b o t h s i d e s ( x + 1 ) 2 + y 2 = ( x + 2 ) 2 + ( y + 2 ) 2 . i 2 + 2 ( x + 2 ) ( y + 2 ) i x 2 + 1 + 2 x + y 2 = x 2 + 4 + 4 x y 2 4 y 4 + 2 ( x + 2 ) ( y + 2 ) i C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t x 2 + 1 + 2 x + y 2 = x 2 + 4 x y 2 4 y a n d 2 ( x + 2 ) ( y + 2 ) = 0 2 y 2 2 x + 4 y + 1 = 0 ( i ) a n d ( x + 2 ) ( y + 2 ) = 0 ( i i ) x + 2 = 0 o r y + 2 = 0 x = 2 o r y = 2 N o w p u t x = 2 i n e q n . ( i ) 2 y 2 2 × ( 2 ) + 4 y + 1 = 0 2 y 2 + 4 + 4 y + 1 = 0 2 y 2 + 4 y + 5 = 0 b 2 4 a c = ( 4 ) 2 4 × 2 × 5 = 1 6 4 0 = 2 4 < 0 n o r e a l r o o t s . N o w p u t y = 2 i n e q n . ( i ) 2 ( 2 ) 2 2 x + 4 ( 2 ) + 1 = 0 8 2 x 8 + 1 = 0 x = 1 2 a n d y = 2 H e n c e , t h e v a l u e o f z = x + i y = ( 1 2 2 i ) .
2. If arg  ( z 1 ) = arg  ( z + 3 i ) , then find x 1 : y , where z = x + i y .
Sol. G i v e n t h a t : a r g ( z 1 ) = a r g ( z + 3 i ) a r g ( x + y i 1 ) = a r g ( x + y i + 3 i ) a r g [ ( x 1 ) + y i ] = a r g [ x + ( y + 3 ) i ] t a n 1 y x 1 = t a n 1 y + 3 x y x 1 = y + 3 x x y = ( x 1 ) ( y + 3 ) x y = x y + 3 x y 3 3 x y = 3 3 x 3 = y 3 ( x 1 ) = y ( x 1 ) y = 1 3 x 1 : y = 1 : 3 H e n c e , x 1 : y = 1 : 3 .
Q&A Icon
Commonly asked questions
Q:  

If arg (z1)=arg (z+3i) , then find x 1 : y , where z = x + i y .

A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : a r g ( z 1 ) = a r g ( z + 3 i ) a r g ( x + y i 1 ) = a r g ( x + y i + 3 i ) a r g [ ( x 1 ) + y i ] = a r g [ x + ( y + 3 ) i ] t a n 1 y x 1 = t a n 1 y + 3 x y x 1 = y + 3 x x y = ( x 1 ) ( y + 3 ) x y = x y + 3 x y 3 3 x y = 3 3 x 3 = y 3 ( x 1 ) = y ( x 1 ) y = 1 3 x 1 : y = 1 : 3 H e n c e , x 1 : y = 1 : 3 .

Q:  

If ? z ? + 1 ? = z + 2 ( 1 + i ) , then find z .

A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : | z + 1 | = z + 2 ( 1 + i ) L e t z = x + i y S o , | x + i y + 1 | = ( x + i y ) + 2 ( 1 + i ) | ( x + 1 ) + i y | = x + i y + 2 + 2 i | ( x + 1 ) + i y | = ( x + 2 ) + ( y + 2 ) i ( x + 1 ) 2 + y 2 = ( x + 2 ) + ( y + 2 ) i [ ? | x + i y | = x 2 + y 2 ] S q u a r i n g b o t h s i d e s ( x + 1 ) 2 + y 2 = ( x + 2 ) 2 + ( y + 2 ) 2 . i 2 + 2 ( x + 2 ) ( y + 2 ) i x 2 + 1 + 2 x + y 2 = x 2 + 4 + 4 x y 2 4 y 4 + 2 ( x + 2 ) ( y + 2 ) i C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t x 2 + 1 + 2 x + y 2 = x 2 + 4 x y 2 4 y a n d 2 ( x + 2 ) ( y + 2 ) = 0 2 y 2 2 x + 4 y + 1 = 0 ( i ) a n d ( x + 2 ) ( y + 2 ) = 0 ( i i ) x + 2 = 0 o r y + 2 = 0 x = 2 o r y = 2 N o w p u t x = 2 i n e q n . ( i ) 2 y 2 2 × ( 2 ) + 4 y + 1 = 0 2 y 2 + 4 + 4 y + 1 = 0 2 y 2 + 4 y + 5 = 0 b 2 4 a c = ( 4 ) 2 4 × 2 × 5 = 1 6 4 0 = 2 4 < 0 n o r e a l r o o t s . N o w p u t y = 2 i n e q n . ( i ) 2 ( 2 ) 2 2 x + 4 ( 2 ) + 1 = 0 8 2 x 8 + 1 =

Q:  

Show that   ? z 2 z + 3 ? = 2 represents a circle. Find its centre and radius.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : | z 2 z 3 | = 2 L e t z = x + i y | x + i y 2 x + i y 3 | = 2 | ( x 2 ) + i y ( x 3 ) + i y | = 2 | ( x 2 ) + i y | | ( x 3 ) + i y | = 2 [ ? | a b | = | a | | b | ] | ( x 2 ) + i y | = 2 | ( x 3 ) + i y | ( x 2 ) 2 + y 2 = 2 ( x 3 ) 2 + y 2 [ ? | x + i y | = x 2 + y 2 ] S q u a r i n g b o t h s i d e s ( x 2 ) 2 + y 2 = 4 [ ( x 3 ) 2 + y 2 ] x 2 + 4 4 x + y 2 = 4 [ x 2 + 9 6 x + y 2 ] x 2 + y 2 4 x + 4 = 4 x 2 + 4 y 2 2 4 x + 3 6 3 x 2 + 3 y 2 2 0 x + 3 2 = 0 x 2 + y 2 2 0 3 x + 3 2 3 = 0 H e r e , g = 1 0 3 , f = 0 r = g 2 + f 2 c = 1 0 0 9 0 3 2 3 = 4 9 = 2 3 H e n c e , t h e r e q u i r e d e q u a t i o n o f a c i r c l e i s x 2 + y 2 2 0 3 x + 3 2 3 = 0 C e n t r e = ( g , f ) = ( 1 0 3 , 0 ) a n d r = 2 3 .

Q:  

If z 1 z + 1 is a purely imaginary number ( z 1 ), then find the value of ? z ? .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : z 1 z + 1 i s p u r e l y i m a g i n a r y n u m b e r . L e t z = x + y i x + y i 1 x + y i + 1 = ( x 1 ) + i y ( x + 1 ) + i y = ( x 1 ) + i y ( x + 1 ) + i y × ( x + 1 ) i y ( x + 1 ) i y ( x 1 ) ( x + 1 ) i y ( x 1 ) + ( x + 1 ) i y i 2 y 2 ( x + 1 ) 2 i 2 y 2 x 2 1 + i y ( x + 1 x + 1 ) + y 2 x 2 + 1 + 2 x + y 2 = x 2 + y 2 1 + 2 y i x 2 + y 2 + 2 x + 1 x 2 + y 2 1 x 2 + y 2 + 2 x + 1 + 2 y x 2 + y 2 + 2 x + 1 i Since,thenumberispurelyimaginary,thenrealpart=0 x 2 + y 2 1 x 2 + y 2 + 2 x + 1 = 0 x 2 + y 2 1 = 0 x 2 + y 2 = 1 x 2 + y 2 = 1 | z | = 1

Q:  

z 1 and   z 2 are two complex numbers such that ? z 1 ? = ? z 2 ? = 1  and arg (z1)+arg (z2)=π , then show that z 1 = z 2 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

L e t z 1 = r 1 ( c o s θ 1 + i s i n θ 1 ) a n d z 2 = r 2 ( c o s θ 2 + i s i n θ 2 ) a r e p o l a r f o r m o f t w o c o m p l e x n u m b e r s z 1 a n d z 2 . G i v e n t h a t : | z 1 | = | z 2 | r 1 = r 2 a n d a r g ( z 1 ) + a r g ( z 2 ) = π θ 1 + θ 2 = π θ 1 = π θ 2 N o w z 1 = r 1 [ c o s ( π θ 2 ) + i s i n ( π θ 2 ) ] z 1 = r 1 [ c o s θ 2 + i s i n θ 2 ] z 1 = r 1 [ c o s θ 2 i s i n θ 2 ] ( i ) z 2 = r 2 [ c o s θ 2 + i s i n θ 2 ] z ¯ 2 = r 1 [ c o s θ 2 i s i n θ 2 ] [ ? r 1 = r 2 ] ( i i ) F r o m e q n . ( i ) a n d ( i i ) w e g e t , z 1 = z ¯ 2 . H e n c e p r o v e d .

Q:  

If   z 1 = 1 ( z 1 1 ) and z 2 = z 1 1 z 1 + 1 , then show that the real part of   z 2 is zero.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

L e t z 1 = x + y i | z 1 | = x 2 + y 2 = 1 [ G i v e n t h a t | z 1 | = 1 ] x 2 + y 2 = 1 ( i ) N o w z 2 = z 1 1 z 1 + 1 = x + y i 1 x + y i + 1 = ( x 1 ) + y i ( x + 1 ) + y i = ( x 1 ) + y i ( x + 1 ) + y i × x + 1 y i x + 1 y i = ( x 1 ) ( x + 1 ) y ( x 1 ) i + y ( x + 1 ) i y 2 i 2 ( x + 1 ) 2 y 2 i 2 = x 2 1 + y i ( x + 1 x + 1 ) + y 2 x 2 + 1 + 2 x + y 2 = ( x 2 + y 2 1 ) + 2 y i x 2 + y 2 + 2 x + 1 = ( 1 1 ) x 2 + y 2 + 2 x + 1 + 2 y x 2 + y 2 + 2 x + 1 i = 0 + 2 y x 2 + y 2 + 2 x + 1 i H e n c e , t h e r e a l p a r t o f z 2 i s 0 .

Q:  

If   z 1 , z 2 and   z 3 , z 4 are two pairs of conjugate complex numbers, then find arg(z1z4)+arg(z2z3) .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

L e t t h e p o l a r f o r m o f z 1 = r 1 ( c o s θ 1 + i s i n θ 1 ) z 2 = z ¯ 1 = r 1 ( c o s θ 1 i s i n θ 1 ) = r 1 [ c o s ( θ 1 ) + i s i n ( θ 1 ) ] S i m i l a r l y , z 3 = r 2 ( c o s θ 2 + i s i n θ 2 ) z 4 = z ¯ 3 = r 1 ( c o s θ 2 i s i n θ 2 ) = r 2 [ c o s ( θ 2 ) + i s i n ( θ 2 ) ] a r g ( z 1 z 4 ) + a r g ( z 2 z 3 ) = a r g ( z 1 ) a r g ( z 4 ) + a r g ( z 2 ) a r g ( z 3 ) = θ 1 ( θ 2 ) + ( θ 1 ) θ 2 = θ 1 + θ 2 θ 1 θ 2 = 0 H e n c e , a r g ( z 1 z 4 ) + a r g ( z 2 z 3 ) = 0

Q:  

If ? z 1 ? = ? z 2 ? = . . . = ? z n ? = 1 , then show that ? z 1 +   z 2 + z 3 + . . . + 1 z 1 = z 2 z 2 + z 3 z 3 + z 4 z 3 + . . . + z 1 z n .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

W e h a v e | z 1 | = | z 2 | = = | z n | = 1 | z 1 | 2 = | z 2 | 2 = = | z n | 2 = 1 ( i ) z 1 z ¯ 1 = z 2 z ¯ 2 = = z n z ¯ n = 1 [ ? z z ¯ = | z | 2 ] z 1 = 1 z ¯ 1 , z 2 = 1 z ¯ 2 = = z n = 1 z ¯ n L . H . S . | z 1 + z 2 + z 3 + + z n | = | z 1 z ¯ 1 z ¯ 1 + z 2 z ¯ 2 z ¯ 2 + z 3 z ¯ 3 z ¯ 3 + + z n z ¯ n z ¯ n | = | | z 1 | 2 z ¯ 1 + | z 2 | 2 z ¯ 2 + | z 3 | 2 z ¯ 3 + + | z n | 2 z ¯ n | [ ? z z ¯ = | z | 2 ] = | 1 z ¯ 1 + 1 z ¯ 2 + 1 z ¯ 3 + + 1 z ¯ n | [ Using(i) ] = | 1 z 1 + 1 z 2 + 1 z 3 + + 1 z n ¯ | [ ? z ¯ 1 + z ¯ 2 = z 1 + z 2 ¯ ] = | 1 z 1 + 1 z 2 + 1 z 3 + + 1 z n | [ ? | z | = | z ¯ 1 | ] L . H . S . R . H . S . H e n c e p r o v e d .

Q:  

If for complex numbers   z 1 and z 2 , arg (z1)arg(z2)=0 , then show that ? z 1 z 2 ? = ? z 1 ? ? z 2 ?  

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t f o r z 1 a n d z 2 , a r g ( z 1 ) a r g ( z 2 ) = 0 L e t u s r e p r e s e n t z 1 a n d z 2 i n p o l a r f o r m z 1 = r 1 ( c o s θ 1 + i s i n θ 1 ) a n d z 2 = r 2 ( c o s θ 2 + i s i n θ 2 ) a r g ( z 1 ) = θ 1 a n d a r g ( z 2 ) = θ 2 Sincearg(z1)arg(z2)=0 θ 1 θ 2 = 0 θ 1 = θ 2 N o w z 1 z 2 = r 1 ( c o s θ 1 i s i n θ 1 ) r 2 ( c o s θ 2 + i s i n θ 2 ) = r 1 c o s θ 1 i r 1 s i n θ 1 r 2 c o s θ 1 + i r 2 s i n θ 1 [ ? θ 1 = θ 2 ] = ( r 1 c o s θ 1 r 2 c o s θ 1 ) + i ( r 1 s i n θ 1 r 2 s i n θ 1 ) | z 1 z 2 | = ( r 1 c o s θ 1 r 2 c o s θ 1 ) 2 + ( r 1 s i n θ 1 r 2 s i n θ 1 ) 2 = ( r 1 2 c o s 2 θ 1 + r 2 2 c o s 2 θ 1 2 r 1 r 2 c o s 2 θ 1 + r 1 2 s i n 2 θ 1 + r 2 2 s i n 2 θ 1 2 r 1 r 2 s i n 2 θ 1 ) = r 1 2 ( c o s 2 θ 1 + s i n 2 θ 1 ) + r 2 2 ( c o s 2 θ 1 + s i n 2 θ 1 ) 2 r 1 r 2 ( c o s 2 θ 1 + s i n 2 θ 1 ) = r 1 2 + r 2 2 2 r 1 r 2 = ( r 1 r 2 ) 2 = r 1 r 2 = | z 1 | | z 2 | H e n c e , | z 1 z 2 | = | z 1 | | z 2 |

Q:  

Solve the system of equations Re(z2)=0,z=2 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : R e ( z 2 ) = 0 a n d | z | = 2 L e t z = x + y i | z | = x 2 + y 2 x 2 + y 2 = 2 x 2 + y 2 = 4 ( i ) Sincez=x+yi z 2 = x 2 + y 2 i 2 + 2 x y i z 2 = x 2 y 2 + 2 x y i R e ( z 2 ) = x 2 y 2 x 2 y 2 = 0 ( i i ) F r o m e q n . ( i ) a n d ( i i ) , w e g e t x 2 + y 2 = 4 2 x 2 = 4 x 2 = 2 x = ± 2 a n d y = ± 2 H e n c e , z = ± 2 ± i 2 , 2 ± i 2 .

Q:  

Find the complex number satisfying the equation z + 2 ? z + 1 ? + i = 0 .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : z + 2 | ( z + 1 ) | + i = 0 L e t z = x + y i ( x + y i ) + 2 | ( x + y i + 1 ) | + i = 0 x + ( y + 1 ) i + 2 | ( x + 1 ) + y i | = 0 x + ( y + 1 ) i + 2 ( x + 1 ) 2 + y 2 = 0 x + ( y + 1 ) i + 2 x 2 + 2 x + 1 + y 2 = 0 + 0 i x + 2 x 2 + 2 x + 1 + y 2 = 0 , y + 1 = 0 x = 2 x 2 + 2 x + 1 + y 2 a n d y = 1 x 2 = 2 ( x 2 + 2 x + 1 + y 2 ) x 2 = 2 x 2 + 4 x + 2 + 2 y 2 x 2 + 4 x + 2 + 2 y 2 = 0 x 2 + 4 x + 2 + 2 ( 1 ) 2 = 0 [ ? y = 1 ] x 2 + 4 x + 4 = 0 ( x + 2 ) 2 = 0 x + 2 = 0 x = 2 H e n c e , z = x + y i = 2 i .

Q:  

Write the complex number z = 1 i c o s π 3 + i s i n π 3    in polar form.

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t : z = 1 i 1 2 + i 3 2 = 2 2 i 1 + i 3 = 2 2 i 1 + i 3 × 1 i 3 1 i 3 z = 2 2 3 i 2 i + 2 3 i 2 ( 1 ) 2 ( i 3 ) 2 = 2 2 3 i 2 i 2 3 1 3 i 2 = ( 2 2 3 ) ( 2 + 2 3 ) i 4 = 1 3 2 1 + 3 2 i r = ( 1 3 2 ) 2 + ( 1 + 3 2 ) 2 = 1 + 3 2 3 4 + 1 + 3 + 2 3 4 = 4 2 3 + 4 + 2 3 4 = 8 4 = 2 S o r = 2 N o w a r g ( z ) = t a n 1 y x θ = t a n 1 ( 1 + 3 2 ) ( 1 3 2 ) = t a n 1 [ ( 1 + 3 1 3 ) ] = t a n 1 3 + 1 3 1 θ = t a n 1 [ t a n ( π 4 + π 6 ) ] [ ? t a n ( π 4 + π 6 ) = t a n π 4 + t a n π 6 1 t a n π 4 t a n π 6 ] θ = 5 π 1 2 H e n c e , t h e p o l a r i s z = 2 [ c o s ( 5 π 1 2 ) + i s i n ( 5 π 1 2 ) ] .

Q:  

If   z and   w are two complex numbers such that   ? z w ? = 1 and arg (z)arg (w)=π2 , then show that z w = i .

Read more
A: 

This is a long answer type question as classified in NCERT Exemplar

L e t z = r 1 ( c o s θ 1 + i s i n θ 1 ) a n d w = r 2 ( c o s θ 2 + i s i n θ 2 ) z w = r 1 r 2 [ ( c o s θ 1 i s i n θ 1 ) ] [ ( c o s θ 2 + i s i n θ 2 ) ] | z w | = r 1 r 2 = 1 [ G i v e n ] N o w a r g ( z ) a r g ( w ) = π 2 θ 1 θ 2 = π 2 a r g ( z w ) = π 2 z ¯ w = r 1 ( c o s θ 1 i s i n θ 1 ) r 2 ( c o s θ 2 + i s i n θ 2 ) = r 1 r 2 [ c o s θ 1 c o s θ 2 + i c o s θ 1 s i n θ 2 i s i n θ 1 c o s θ 2 i 2 s i n θ 1 s i n θ 2 ] = r 1 r 2 [ ( c o s θ 1 c o s θ 2 + s i n θ 1 s i n θ 2 ) + i ( c o s θ 1 s i n θ 2 s i n θ 1 c o s θ 2 ) ] = r 1 r 2 [ c o s ( θ 2 θ 1 ) + i s i n ( θ 2 θ 1 ) ] = r 1 r 2 [ c o s ( π 2 ) + i s i n ( π 2 ) ] = r 1 r 2 [ c o s π 2 i s i n π 2 ] = 1 . [ 0 i ] = i H e r e z ¯ w = i . H e n c e p r o v e d .

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Other Questions

1. What is the conjugate of 2 i ( 1 2 i )  z
Sol. G i v e n t h a t z = 2 i ( 1 2 i ) 2 = 2 i 1 + 4 i 2 4 i = 2 i 1 4 4 i = 2 i 3 4 i = 2 i 3 4 i × 3 + 4 i 3 + 4 i = 6 + 8 i + 3 i 4 i 2 ( 3 ) 2 ( 4 i ) 2 = 6 + 1 1 i + 4 9 1 6 i 2 = 2 + 1 1 i 9 + 1 6 = 2 2 5 + 1 1 2 5 i z ¯ = 2 2 5 1 1 2 5 i H e n c e , z ¯ = 2 2 5 1 1 2 5 i
2. If z 1 = z 2 = 1  , is it necessary that  z 1 = z 2  ?
Sol. L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | x 1 + y 1 i | = | x 2 + y 2 i | x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 = x 2 2 a n d y 1 2 = y 2 2 x 1 = ± x 2 a n d y 1 = ± y 2 S o , z 1 = x 1 + y 1 i a n d z 2 = ± x 2 ± y 2 i z 1 z 2 H e n c e , i t i s n o t n e c e s s a r y t h a t z 1 = z 2 .
Q&A Icon
Commonly asked questions
Q:  

What is the conjugate of 2i(12i) z

A: 

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t z = 2 i ( 1 2 i ) 2 = 2 i 1 + 4 i 2 4 i = 2 i 1 4 4 i = 2 i 3 4 i = 2 i 3 4 i × 3 + 4 i 3 + 4 i = 6 + 8 i + 3 i 4 i 2 ( 3 ) 2 ( 4 i ) 2 = 6 + 1 1 i + 4 9 1 6 i 2 = 2 + 1 1 i 9 + 1 6 = 2 2 5 + 1 1 2 5 i z ¯ = 2 2 5 1 1 2 5 i H e n c e , z ¯ = 2 2 5 1 1 2 5 i

Q:  

If ?z1?=?z2?=1 , is it necessary that z1=z2 ?

A: 

This is Other Questions as classified in NCERT Exemplar

L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | x 1 + y 1 i | = | x 2 + y 2 i | x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 = x 2 2 a n d y 1 2 = y 2 2 x 1 = ± x 2 a n d y 1 = ± y 2 S o , z 1 = x 1 + y 1 i a n d z 2 = ± x 2 ± y 2 i z 1 z 2 H e n c e , i t i s n o t n e c e s s a r y t h a t z 1 = z 2 .

Q:  

If ?z1?=?z2?=1 , is it necessary that z1=z2 ?

A: 

This is Other Questions as classified in NCERT Exemplar

L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | x 1 + y 1 i | = | x 2 + y 2 i | x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 = x 2 2 a n d y 1 2 = y 2 2 x 1 = ± x 2 a n d y 1 = ± y 2 S o , z 1 = x 1 + y 1 i a n d z 2 = ± x 2 ± y 2 i z 1 z 2 H e n c e , i t i s n o t n e c e s s a r y t h a t z 1 = z 2 .

Q:  

 Find z if ?z?=4 and (z)=5π6 .

A: 

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : | z | = 4 a n d a r g ( z ) = 5 π 6 θ = 5 π 6 | z | = 4 r = 4 S o P o l a r f o r m o f z = r [ c o s θ + i s i n θ ] = 4 [ c o s 5 π 6 + i s i n 5 π 6 ] = 4 [ c o s ( π π 6 ) + i s i n ( π π 6 ) ] = 4 [ c o s π 6 + i s i n π 6 ] = 4 [ 3 2 + i . 1 2 ] = 2 3 + 2 i H e n c e , z = 2 3 + 2 i .

Q:  

Find |(1+i)(2+i)(3+i)|

A: 

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : | ( 1 + i ) ( 2 + i ) ( 3 + i ) | | ( 1 + i ) ( 2 + i ) ( 3 + i ) × 3 i 3 i | = | ( 1 + i ) . 6 2 i + 3 i i 2 9 i 2 | = | ( 1 + i ) . ( 7 + i ) 9 + 1 | = | 7 + i + 7 i + i 2 1 0 | = | 7 + 8 i 1 1 0 | = | 6 + 8 i 1 0 | = | 3 5 + 4 5 i | = ( 3 5 ) 2 + ( 4 5 ) 2 = 9 2 5 + 1 6 2 5 = 2 5 2 5 = 1 H e n c e , | ( 1 + i ) ( 2 + i ) ( 3 + i ) | = 1

Q:  

Find the principal argument of (1+i3)2 .

A: 

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : ( 1 + i 3 ) 2 = 1 + i 2 . 3 + 2 3 i = 1 3 + 2 3 i = 2 + 2 3 i t a n α = | 2 3 2 | [ ? t a n α = | I m g ( z ) R e ( z ) | ] t a n α = | 3 | = 3 t a n α = t a n π 3 α = π 3 N o w R e ( z ) < 0 a n d i m a g e ( z ) > 0 a r g ( z ) = π α = π π 3 = 2 π 3 H e n c e , t h e p r i n c i p l e a r g = 2 π 3 .

Q:  

 Where does z lie, if z5iz+5i=15?

A: 

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : | z 5 i z + 5 i | = 1 L e t z = x + y i | x + y i 5 i x + y i + 5 i | = 1 | x + ( y 5 ) i x + ( y + 5 ) i | = 1 | x + ( y 5 ) i | = | x + ( y + 5 ) i | x 2 + ( y 5 ) 2 = x 2 + ( y + 5 ) 2 ( y 5 ) 2 = ( y + 5 ) 2 y 2 + 2 5 1 0 y = y 2 + 2 5 + 1 0 y 2 0 y = 0 y = 0 H e n c e , z l i e s o n x a x i s i . e . , r e a l a x i s .

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Objective Type Questions

1. s i n x + i   c o s   2 x and  c o s x i   s i n   2 x  are conjugate to each other for:

(a)  x = n π

(b)  x = n + π 2 + π 2

(c)  x = 0

(d) no value of x

Sol.  L e t z = s i n x + i c o s 2 x z ¯ = s i n x i c o s 2 x B u t w e a r e g i v e n t h a t z ¯ = c o s x i s i n 2 x s i n x i c o s 2 x = c o s x i s i n 2 x C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t s i n x = c o s x a n d c o s 2 x = s i n 2 x t a n x = 1 a n d t a n 2 x = 1 t a n x = t a n π 4 a n d t a n 2 x = t a n π 4 x = n π + π 4 , n I a n d 2 x = n π + π 4 x = 2 x 2 x x = 0 x = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

2. The real value of  α  for which the expression  1 i s i n   α 1 + i s i n   α    is purely real is:

(a)  ( n + 1 ) + π 2

(b)  ( 2 n + 1 ) π 2

(c)  n π

(d) None of these, where  n

Sol.  L e t z = 1 i s i n α 1 + 2 i s i n α = ( 1 i s i n α ) ( 1 2 i s i n α ) ( 1 + 2 i s i n α ) ( 1 2 i s i n α ) = 1 2 i s i n α i s i n α + 2 i 2 s i n 2 α ( 1 ) 2 ( 2 i s i n α ) 2 = 1 3 i s i n α 2 s i n 2 α 1 4 i 2 s i n 2 α = ( 1 2 s i n 2 α ) 3 i s i n α 1 + 4 s i n 2 α = 1 2 s i n 2 α 1 + 4 s i n 2 α 3 s i n α 1 + 4 s i n 2 α . i Since , z i s p u r e l y r e a l , t h e n 3 s i n α 1 + 4 s i n 2 α = 0 s i n α = 0 S o , α = n π , n N . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .
Q&A Icon
Commonly asked questions
Q:  

If z  is a complex number, then

(a) z 2 > z 2  

(b) z 2 = z 2  

(c) z 2 < z 2    

(d) z 2 z 2  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = x + y i | z | = | x + y i | a n d | z | 2 = | x + y i | 2 | z | 2 = x 2 + y 2 ( i ) N o w z 2 = x 2 + y 2 i 2 + 2 x y i z 2 = x 2 y 2 + 2 x y i | z 2 | = ( x 2 y 2 ) 2 + ( 2 x y ) 2 = x 4 + y 4 2 x 2 y 2 + 4 x 2 y 2 = x 4 + y 4 + 2 x 2 y 2 = ( x 2 + y 2 ) 2 S o | z 2 | = x 2 + y 2 = | z | 2 S o | z 2 | = | z | 2 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

s i n x + i   c o s   2 x and cosxi sin 2x are conjugate to each other for:

(a)  x = n π

(b)  x = n + π 2 + π 2

(c)  x = 0

(d) no value of x

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = s i n x + i c o s 2 x z ¯ = s i n x i c o s 2 x B u t w e a r e g i v e n t h a t z ¯ = c o s x i s i n 2 x s i n x i c o s 2 x = c o s x i s i n 2 x C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t s i n x = c o s x a n d c o s 2 x = s i n 2 x t a n x = 1 a n d t a n 2 x = 1 t a n x = t a n π 4 a n d t a n 2 x = t a n π 4 x = n π + π 4 , n I a n d 2 x = n π + π 4 x = 2 x 2 x x = 0 x = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The real value of α for which the expression 1isin α1+isin α  is purely real is:

(a)  ( n + 1 ) + π 2

(b)  ( 2 n + 1 ) π 2

(c)  n π

(d) None of these, where n?

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = 1 i s i n α 1 + 2 i s i n α = ( 1 i s i n α ) ( 1 2 i s i n α ) ( 1 + 2 i s i n α ) ( 1 2 i s i n α ) = 1 2 i s i n α i s i n α + 2 i 2 s i n 2 α ( 1 ) 2 ( 2 i s i n α ) 2 = 1 3 i s i n α 2 s i n 2 α 1 4 i 2 s i n 2 α = ( 1 2 s i n 2 α ) 3 i s i n α 1 + 4 s i n 2 α = 1 2 s i n 2 α 1 + 4 s i n 2 α 3 s i n α 1 + 4 s i n 2 α . i Since,zispurelyreal,then 3 s i n α 1 + 4 s i n 2 α = 0 s i n α = 0 S o , α = n π , n N . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If z = x + i y  lies in the third quadrant, then z ¯ z ?  also lies in the third quadrant if:

(a) x > y > 0         

(b) x < y < 0  

(c) y < x < 0   

(d) y > x > 0   

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : z = x + i y I f z l i e s i n t h i r d q u a d r a n t . S o x < 0 a n d y < 0 . z ¯ = x i y z ¯ z = x i y x + i y = x i y x + i y × x i y x i y = x 2 + i 2 y 2 2 x y i x 2 i 2 y 2 = x 2 y 2 2 x y i x 2 + y 2 = x 2 y 2 x 2 + y 2 2 x y x 2 + y 2 i W h e n z l i e s i n t h i r d q u a d r a n t t h e n z ¯ z w i l l a l s o b e l i e i n t h i r d q u a d r a n t x 2 y 2 x 2 + y 2 < 0 a n d 2 x y x 2 + y 2 < 0 x 2 y 2 < 0 a n d 2 x y > 0 x 2 < y 2 a n d x y > 0 S o , x < y < 0 . H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The value of ? ( z + 3 ) ( z ¯ ? + 3 ) ?  is equivalent to:

(a) ? z + 3 ? 2   

(b) z 3    

(c) z 2 + 3    

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : ( z + 3 ) ( z ¯ + 3 ) L e t z = x + y i S o ( z + 3 ) ( z ¯ + 3 ) = ( x + y i + 3 ) ( x y i + 3 ) = [ ( x + 3 ) + y i ] [ ( x + 3 ) y i ] = ( x + 3 ) 2 y 2 i 2 = ( x + 3 ) 2 + y 2 = | x + 3 + i y | 2 = | z + 3 | 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If 1 + i 1 i = 1 , then

(a) x = 2 n + 1     

(b) x = 4 n  

(c) x = 2 n   

(d) x = 4 n + 1   , where n ?

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : ( 1 + i 1 i ) x = 1 ( ( 1 + i ) ( 1 + i ) ( 1 i ) ( 1 + i ) ) x = 1 ( 1 + i 2 + 2 i 1 i 2 ) x = 1 ( 1 1 + 2 i 1 + 1 ) x = 1 ( 2 i 2 ) x = 1 ( i ) x = ( i ) 4 n x = 4 n , n N H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

A real value of x  satisfies the equation ( 3 4 i x 3 + 4 i x ) = α i β ( α , β R ) if α 2 + β 2 =

(a) 1   

(b) -1  

(c) 2    

(d) -2  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : ( 3 4 i x 3 + 4 i x ) = α i β ( 3 4 i x 3 + 4 i x × 3 4 i x 3 4 i x ) = α i β ( 9 1 2 i x 1 2 i x + 1 6 i 2 x 2 9 1 6 i 2 x 2 ) = α i β 9 2 4 i x 1 6 x 2 9 + 1 6 x 2 = α i β 9 1 6 x 2 9 + 1 6 x 2 2 4 x 9 + 1 6 x 2 . i = α i β ( i ) 9 1 6 x 2 9 + 1 6 x 2 + 2 4 x 9 + 1 6 x 2 . i = α + i β ( i i ) M u l t i p l y i n g e q n . ( i ) a n d ( i i ) w e g e t ( 9 1 6 x 2 9 + 1 6 x 2 ) 2 + ( 2 4 x 9 + 1 6 x 2 ) 2 = α 2 + β 2 ( 9 1 6 x 2 ) 2 + ( 2 4 x ) 2 ( 9 + 1 6 x 2 ) 2 = α 2 + β 2 8 1 + 2 5 6 x 4 2 8 8 x 2 + 5 7 6 x 2 ( 9 + 1 6 x 2 ) 2 = α 2 + β 2 8 1 + 2 5 6 x 4 + 2 8 8 x 2 ( 9 + 1 6 x 2 ) 2 = α 2 + β 2 ( 9 + 1 6 x 2 ) 2 ( 9 + 1 6 x 2 ) 2 = α 2 + β 2 S o , α 2 + β 2 = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Which of the following is correct for any two complex numbers z 1  and z 2 ?

(a) ? z 1 z 2 ? = ? z 1 ? ? z 2 ?          

(b) arg (z1z2)=arg(z1)arg(z2)         

(c) ? z 1 + z 2 ? = ? z 1 ? + ? z 2 ?           

(d) ? z 1 + z 2 ? ? ? z 1 ? ? z 2 ? ?         

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z 1 = r 1 ( c o s θ 1 + i s i n θ 1 ) | z 1 | = r 1 a n d z 2 = r 2 ( c o s θ 2 + i s i n θ 2 ) | z 2 | = r 2 z 1 z 2 = r 1 ( c o s θ 1 + i s i n θ 1 ) . r 2 ( c o s θ 2 + i s i n θ 2 ) = r 1 r 2 ( c o s θ 1 + i s i n θ 1 ) . ( c o s θ 2 + i s i n θ 2 ) = r 1 r 2 ( c o s θ 1 c o s θ 2 + i s i n θ 2 c o s θ 1 + i s i n θ 1 c o s θ 2 + i 2 s i n θ 1 s i n θ 2 ) = r 1 r 2 [ ( c o s θ 1 c o s θ 2 s i n θ 1 s i n θ 2 ) + i ( s i n θ 1 c o s θ 2 + c o s θ 1 s i n θ 2 ) ] = r 1 r 2 [ c o s ( θ 1 + θ 2 ) + i s i n ( θ 1 + θ 2 ) ] | z 1 z 2 | = | z 1 | | z 2 | H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The point represented by the complex number 2i  is rotated about the origin through an angle π2  in the clockwise direction, the new position of the point is:

(a) 1+2i     

(b) 12i    

(c) 2+i     

(d) 1+2i  

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : z = 2 i I f z r o t a t e d t h r o u g h a n a n g l e o f π 2 a b o u t t h e o r i g i n i n c l o c k w i s e d i r e c t i o n . T h e n t h e n e w p o s i t i o n = z . e ( π / 2 ) = ( 2 i ) . e ( π / 2 ) = ( 2 i ) [ c o s ( π 2 ) + i s i n ( π 2 ) ] = ( 2 i ) ( 0 i ) = 1 2 i H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

Let x , y ? , then x + i y  is a non-real complex number if:

(a) x = 0   

(b) y = 0   

(c) x 0   

(d) y 0

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

x+yiisanon-realcomplexnumberify0.Ifx, yR. H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If a + i b = c + i d , then

(a) a 2 + c 2 = 0   

(b) b 2 + c 2 = 0  

(c) b 2 + d 2 = 0   

(d) a 2 + b 2 = c 2 + d 2

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : a + i b = c + i d | a + i b | = | c + i d | a 2 + b 2 = c 2 + d 2 S q u a r i n g b o t h s i d e s , w e g e t a 2 + b 2 = c 2 + d 2 H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

The complex number z  which satisfies the condition 1 + i z 1 i z = 1   lies on Circle

(a) Circle x 2 + y 2 = 1

(b) The x-axis

(c) The y-axis

(d) The line x + y = 1 .

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : | i + z i z | = 1 L e t z = x + y i | i + x + y i i x y i | = 1 | x + ( y + 1 ) i x ( y 1 ) i | = 1 | x + ( y + 1 ) i | = | x ( y 1 ) i | x 2 + ( y + 1 ) 2 = x 2 + ( y 1 ) 2 S q u a r i n g b o t h s i d e s , w e g e t x 2 + ( y + 1 ) 2 = x 2 + ( y 1 ) 2 ( y + 1 ) 2 = ( y 1 ) 2 y 2 + 2 y + 1 = y 2 2 y + 1 2 y = 2 y 4 y = 0 y = 0 x a x i s H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

?z1+z2?=?z1?+?z2? is possible if:

(a) z 2 = 1 z 1

(b) z 2 = 1 z ? 1

(c) arg (z1)=arg (z2)

(d) z 1 = z 2 (d) 

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z 1 = r 1 ( c o s θ 1 + i s i n θ 1 ) a n d z 2 = r 2 ( c o s θ 2 + i s i n θ 2 ) Since|z1+z2|=|z1|+|z2| z 1 + z 2 = r 1 c o s θ 1 + i r 1 s i n θ 1 + r 2 c o s θ 2 + i r 2 s i n θ 2 | z 1 + z 2 | = r 1 2 c o s 2 θ 1 + r 2 2 c o s 2 θ 2 + 2 r 1 r 2 c o s θ 1 c o s θ 2 + r 1 2 s i n 2 θ 1 + r 2 2 s i n 2 θ 2 + 2 r 1 r 2 s i n θ 1 s i n θ 2 = r 1 2 + r 2 2 + 2 r 1 r 2 c o s ( θ 1 θ 2 ) B u t | z 1 + z 2 | = | z 1 | + | z 2 | S o r 1 2 + r 2 2 + 2 r 1 r 2 c o s ( θ 1 θ 2 ) = r 1 + r 2 S q u a r i n g b o t h s i d e s , w e g e t r 1 2 + r 2 2 + 2 r 1 r 2 c o s ( θ 1 θ 2 ) = r 1 2 + r 2 2 + 2 r 1 r 2 2 r 1 r 2 2 r 1 r 2 c o s ( θ 1 θ 2 ) = 0 1 c o s ( θ 1 θ 2 ) = 0 c o s ( θ 1 θ 2 ) = 1 θ 1 θ 2 = 0 θ 1 = θ 2 S o , a r g ( z 1 ) = a r g ( z 2 ) H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The real value of θ  for which the expression 1 + i c o s θ 1 i c o s θ   is a real number is:

(a) π 4 + n π    

(b) n π + ( 2 n + 1 ) π 4    

(c) ± π 2 + n π     

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = 1 + i c o s θ 1 2 i c o s θ = 1 + i c o s θ 1 2 i c o s θ × 1 + 2 i c o s θ 1 + 2 i c o s θ = 1 + 2 i c o s θ + i c o s θ + 2 i 2 c o s 2 θ 1 4 i 2 c o s 2 θ = 1 + 3 i c o s θ 2 c o s 2 θ 1 + 4 c o s 2 θ = 1 2 c o s 2 θ 1 + 4 c o s 2 θ + 3 c o s θ 1 + 4 c o s 2 θ i I f z i s a r e a l n u m b e r , t h e n 3 c o s θ 1 + 4 c o s 2 θ = 0 3 c o s θ = 0 c o s θ = 0 θ = ( 2 n + 1 ) π 2 , n N . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

The value of arg(x) when x < 0  is:

(a) 0   

(b) π 2  

(c) π  

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = x + 0 i a n d x < 0 | z | = ( 1 ) 2 + ( 0 ) 2 = 1 , x < 0 Since,thepoint(x,0)liesonthenegativesideoftherealaxis(?x<0) Principleargument(z)=π H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

If f ( z ) = 2 z 7 1 z , where z = 1 + 2 i , then f ( z )  is:

(a) 2 z    

(b) z    

(c) 2 z   

(d) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t z = 1 + 2 i | z | = ( 1 ) 2 + ( 2 ) 2 = 5 N o w f ( z ) = 7 z 1 z 2 = 7 ( 1 + 2 i ) 1 ( 1 + 2 i ) 2 = 7 1 2 i 1 1 4 i 2 4 i = 6 2 i 4 4 i = 3 i 2 2 i = 3 i 2 2 i × 2 + 2 i 2 + 2 i = 6 + 6 i 2 i 2 i 2 4 4 i 2 = 6 + 4 i + 2 4 + 4 = 8 + 4 i 8 = 1 + 1 2 i S o , | f ( z ) | = ( 1 ) 2 + ( 1 2 ) 2 = 1 + 1 4 = 5 2 = | z | 2 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

JEE MAINS 2 April 2025

JEE MAINS 2 April 2025

Try these practice questions

Q1:

Let f(x) be a differentiable function defined on [0, 2] such that f’(x) = f’(2 – x) for all x ( 0 , 2 ) , x ( 0 , 2 ) , f(0) = 1 and f(2) = e2. Then the value of   0 2 f ( x ) d x i s

View Full Question

Q2:

The value of the integral 1 3 [ x 2 2 x 2 ] d x ,  where [x] denotes the greatest integer less than or equal to x, is

View Full Question

Q3:

For the system of linear equations:

x – 2y = 1, x – y + kz = -2, ky + 4z = 6, k   R ,

Consider the following statements:

(A) The system has unique solution if   k 2 , k 2 .

(B) The system has unique solution if k = -2.

(C) The syste

View Full Question

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

qqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Q&A Icon
Commonly asked questions
Q:  

Let λ  be an integer. IF the shortest distance between the lines x λ = 2 y 1 = 2 z  and x = y + 2 λ = z λ i s 7 2 2 , then the value of   | λ | i s . . . . . . . . . . . . . . . . . . .

Read more
A: 

L 1 = x λ 1 = y 1 2 1 2 = z 1 2           

S D = | 2 λ + 3 ( 2 λ + 1 2 ) + λ | 1 4 = | 5 λ + 3 2 | 1 4           

5 λ + 3 2 = 7 2 5 λ = 5 λ = 1           

| λ | = 1

Q:  

For integers n and r, let  

The maximum value of k for which the sum

i = 0 k ( 1 0 i ) ( 1 5 k i ) + i = 0 k + 1 ( 1 2 i ) ( 1 3 k + 1 i )

Read more
A: 

i = 0 k ( 1 0 i ) ( 1 5 K i ) + i = 0 k + 1 ( 1 2 i ) ( 1 3 k + 1 i )  

= Equating the coefficient of x k i n ( 1 + x ) 2 5 = 2 5 C k ..............(i)

= Equating the coefficient of   x k + 1 i n ( 1 + x ) 1 2 ( x + 1 ) 1 3

From (i) and (ii)

Hence   2 6 k + 1 k 2 5

But maximum value of k is not defined bonus

Q:  

Let i = 1 .  If   ( 1 + i 3 ) 2 1 ( 1 i ) 2 4 + ( 1 + i 3 ) 2 1 ( 1 + i ) 2 4 = k , and n =   [ | k | ] be the greatest integral part of | k | . Then j = 0 n + 5 ( j + 5 ) 2 j = 0 n + 5 ( j + 5 )  is equal to………………..

Read more
A: 

  2 2 1 ( 1 + i 3 2 ) 2 1 ( 2 ) 2 4 ( 1 i 2 ) 2 4 + 2 2 1 ( 1 + 3 i 2 ) 2 1 ( 2 ) 2 4 ( 1 + i 2 ) 2 4 = k

  j = 0 5 ( j + 5 ) ( j + 5 1 ) = j = 0 5 ( j + 5 ) ( j + 4 )

= j = 0 5 ( j 2 + 9 j ^ + 2 0 ) = 5 × 6 × 1 1 6 + 9 × 5 × 6 2 + 2 0 × 6  

55 + 135 + 120 = 310

Q:  

The number of the real roots of the equation (x + 1)2 +   | x 5 | = 2 7 4 i s . . . . . . . . . . . . . . . . .

Read more
A: 

( x + 1 ) 2 + | x 5 | = 2 7 4

Case l        x < 5

x 2 + 2 x + 1 x + 5 = 2 7 4       

( 2 x + 3 ) ( 2 x 1 ) = 0 x = 3 2 , 1 2     

Case II     x 5

x 2 + 2 x + 1 + x 5 = 2 7 4       

x = 1 2 ± 1 4 4 + 4 3 × 1 6 2 × 4 = 1 2 ± 8 3 2 8 ( r e j e c t e d )           

           because x > 5

Q:  

Let a point P be such that its distance from the point (5,0) is thrice the distance of P from the point (-5,0). If the locus of the point P is a circle of radius r, then 4r2 is equal to………………….

Read more
A: 

Let P (h, k)

( h 5 ) 2 + k 2 = 3 ( h + 5 ) 2 + k 2           

h 2 1 0 h + 2 5 + k 2 = 9 h 2 + 9 0 h + 2 2 5 + 9 k 2           

  8 h 2 + 8 k 2 + 1 0 0 h + 2 0 0 = 0

x 2 + y 2 + 2 5 2 x + 2 5 = 0

r 2 = 6 2 5 1 6 2 5 = 6 2 5 4 0 0 1 6 = 2 2 5 1 6

4 r 2 = 2 2 5 4 = 5 6 . 2 5         

Q:  

The sum of first four terms of a geometric progression (G. P) is 6 5 1 2  and the sum of their respective reciprocals is   6 5 1 8 . If the product of first three terms of the G.P is 1,and the third term is a, then 2a is………………

Read more
A: 

Let a, ar, ar2, ar3 are in G.P.

a + ar + ar2 + ar3 = 6 5 1 2  

1 a + 1 a r + 1 a r 2 + 1 a r 3 = 6 5 1 8        

( a r ) 2 r = 3 2 a = 2 3 , r = 3 2          

    third term = ar2 = 2 3 × 9 4 = 3 2  

  α = 3 2 2 α = 3          

Q:  

The students S1, S2,…………….S10 are to be divided into 3 groups A, B and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities of forming such groups is……………..

Read more
A: 

A            B            C

-                -            1

-                -            2

-                -            3

Number of groups = 1 0 C 1 ( 2 9 2 ) = 5 1 0 0  

Number of groups = 1 0 C 2 ( 2 8 2 ) = 1 1 4 3 0  

Number of groups = = 1 0 C 3 ( 2 7 2 ) = 1 5 1 2 0  

Total number of groups = 31650

Q:  

If a + a = 1, b + b = 2 and af(x) + α f ( 1 x ) = b x + β x , x 0 , then the value of the equation f ( x ) + f ( 1 x ) x + 1 x  is………………..

Read more
A: 

a f ( x ) + α f ( 1 x ) = b x + β x . . . . . . . . . . . . ( i )  

Replace x by   1 x


a f ( 1 x ) + α f ( x ) = b x + β x . . . . . . . . . . . . . . ( i i )  

a ( f ( x ) + f ( 1 x ) ) + α ( f ( x ) + f ( 1 x ) ) = b ( x + 1 x ) + β ( x + 1 x )           

f ( x ) + f ( 1 x ) x + 1 x = b + β a + α = 2 1 = 2           

Q:  

IF the variance of 10 natural numbers 1, 1, 1……… 1, k less than 10, then the maximum possible value of k is…………………

Read more
A: 

σ 2 = x 2 n ( x n ) 2 = 9 + k 2 1 0 ( 9 + k 1 0 ) 2 < 1 0

k < 1 0 1 0 3 + 1 k 1 1        

maximum value of k is 11

Q:  

If the area of the triangle formed by the positive x-axis, the normal and the tangent to the circle (x - 2)2 + (y – 3)2 = 25 at the point (5, 7) is A, then 24A is equal to………………

Read more
A: 

Equation of normal is 4x – 3y + 1 = 0

Equation of tangent is 3x + 4y – 43 = 0

Area of triangle = 1 2 ( 4 3 3 + 1 4 ) × 7  

= 1 2 × ( 1 7 2 + 3 1 2 ) × 7 = 1 2 2 5 2 4          

  2 4 A = 1 2 2 5        

 

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

pppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppp

Q&A Icon
Commonly asked questions
Q:  

  l i m n t a n { r = 1 n t a n 1 ( 1 1 + r + r 2 ) } is equal to___________.

A: 

  r = 1 n t a n 1 1 1 + r + r 2 = r = 1 n t a n 1 ( r + 1 ) 1 + r ( r + 1 )

= t a n 1 2 t a n 1 + . . . . . . + t a n 1 ( n + 1 ) t a n 1 n            

For n  value = π 2 π 4 = π 4  

t a n ( π 4 ) = 1           

Q:  

If the least and the largest real values of a, for which the equation z + |z1|+2i=0(zCandi=1) a  has a solution, are p and q respectively, then 4(p2+q2)  is equal to

Read more
A: 

  z + α | z 1 | + 2 i = 0

Let z = x + iy

x + i ( y + 2 ) = α ( x 1 ) 2 + y 2            

 for α R y + 2 = 0 y = 2  

x 2 = α 2 [ ( x 1 ) 2 + 4 ]      = 0

1 α 2 4 5 α 2 5 4 5 2 α 5 2

4 ( p 2 + q 2 ) = 4 ( 5 4 + 5 4 ) = 1 0

          

          

Q:  

Let M be any 3 × 3 matrix with entires from the set {0, 1, 2}. The maximum number of such matrices, for which the sum of diagonal elements MTM is seven is____________.

Read more
A: 

M = [ a 1 a 2 a 3 b 1 b 2 c 3 c 1 c 2 c 3 ]    

M T M = [ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ] [ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ]

T r ( M T M ) = a 1 2 + b 1 2 + c 1 2 + a 2 2 + b 2 2 + c 2 2 + a 3 2 + b 3 2 + c 3 2 = 7           

all   a i , b i , c i { 0 , 1 , 2 } f o r i = 1, 2, 3

Case 1 7 one’s and two zeroes which can occur in ways

Case 2 One 2 three 1’s five zeroes =

 

total such matrices = 504 + 36 = 540

 

Q:  

The minimum values of a for which the equation 4sinx+11sinx=α  has at least one solution in   (0,π2)is_____.

Read more
A: 

4 s i n x + 1 1 s i n x = a x ( 0 , π 2 )  

 Let sin x = t, t (0, 1)

g ( t ) = 4 t + 1 1 t

g ' ( t ) = 0 t = 2 3

g ' ' ( 2 3 ) > 0

g ( t ) m i n i m u m = 4 2 / 3 + 1 1 2 / 3 = 9  

 Minimum value of a for which solution exist = 9

Q:  

  l i m n t a n { r = 1 n t a n 1 ( 1 1 + r + r 2 ) } is equal to___________.

A: 

  r = 1 n t a n 1 1 1 + r + r 2 = r = 1 n t a n 1 ( r + 1 ) 1 + r ( r + 1 )

= t a n 1 2 t a n 1 + . . . . . . + t a n 1 ( n + 1 ) t a n 1 n            

For n  value = π 2 π 4 = π 4  

t a n ( π 4 ) = 1           

Q:  

If the least and the largest real values of a, for which the equation z + | z 1 | + 2 i = 0 ( z C a n d i = 1 ) a  has a solution, are p and q respectively, then 4 ( p 2 + q 2 )  is equal to

Read more
A: 

  z + α | z 1 | + 2 i = 0

Let z = x + iy

x + i ( y + 2 ) = α ( x 1 ) 2 + y 2            

 for α R y + 2 = 0 y = 2  

x 2 = α 2 [ ( x 1 ) 2 + 4 ]      = 0

1 α 2 4 5 α 2 5 4 5 2 α 5 2

4 ( p 2 + q 2 ) = 4 ( 5 4 + 5 4 ) = 1 0

          

          

Q:  

Let M be any 3 × 3 matrix with entires from the set {0, 1, 2}. The maximum number of such matrices, for which the sum of diagonal elements MTM is seven is____________.

Read more
A: 

M = [ a 1 a 2 a 3 b 1 b 2 c 3 c 1 c 2 c 3 ]    

M T M = [ a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 ] [ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ]

T r ( M T M ) = a 1 2 + b 1 2 + c 1 2 + a 2 2 + b 2 2 + c 2 2 + a 3 2 + b 3 2 + c 3 2 = 7           

all   a i , b i , c i { 0 , 1 , 2 } f o r i = 1, 2, 3

Case 1 7 one’s and two zeroes which can occur in ways

Case 2 One 2 three 1’s five zeroes =

 

total such matrices = 504 + 36 = 540

 

Q:  

The minimum values of a for which the equation 4 s i n x + 1 1 s i n x = α  has at least one solution in   ( 0 , π 2 ) i s _ _ _ _ _ .

Read more
A: 

4 s i n x + 1 1 s i n x = a x ( 0 , π 2 )  

 Let sin x = t, t (0, 1)

g ( t ) = 4 t + 1 1 t

g ' ( t ) = 0 t = 2 3

g ' ' ( 2 3 ) > 0

g ( t ) m i n i m u m = 4 2 / 3 + 1 1 2 / 3 = 9  

 Minimum value of a for which solution exist = 9

Q:  

Let     A =   { n N : n i s a 3 d i g i t n u m b e r }

B =   { 9 k + 2 : k N }

And     C = { 9 k + l : k N }  for some   l ( 0 < l < 9 )

If the sum of all the elements of the set   A ( B C ) is 274 × 400, then l  is equal to___________.

Read more
A: 

Sum of elements A ( B C ) = 2 7 4 × 4 0 0  

In set B numbers of the form 9k + 2 are {101, 109, ....992}

s u m = 1 0 0 2 ( 1 0 1 + 9 9 2 ) = 1 0 0 × 1 0 9 3 2 . . . . . . ( i )          

Another possible number is 9k + 5 forms are {104, ..........995}

s u m = 1 0 0 2 ( 1 0 4 + 9 9 5 ) = 1 0 0 2 × 1 0 9 9 . . . . . . . . . ( i i )  

T o t a l = 1 0 0 2 × [ 1 0 9 3 + 1 0 9 9 ] = 1 0 0 × 1 0 9 6 = 2 7 4 × 4 × 1 0 0 = 2 7 4 × 4 0 0           

 possible value of l = 5

Q:  

If one of the diameters of the circle x2 + y2 – 2x – 6y + 6 = 0 is a chord of another circle ‘C’, whose centre is at (2, 1), then its radius is_________

Read more
A: 

x 2 + y 2 2 x 6 y + 6 = 0  centre (1, 3)

r = 1 + 9 6 = 2 C M = 1 + 4 = 5

r = 5 + 4 = 3

Q:  

Let Bi (i = 1, 2, 3) be three independent events in a sample space. The probability that only B1 occurs is γ . a, only B2 occurs is b and B3 occurs is  Let p be the probability that none of the events B1 occurs and these 4 probabilities satisfy the equations (a - 2b) = ab and (b - 3 γ ) p = 2 β γ  (All the probabilities are assumed to lie in the integral (0, 1)). The P ( B 1 ) P ( B 3 )  is equal to_________.

Read more
A: 

Let P (B1) = a      P (B2) = b            P (B3) = c

Given a (1 – b) (1 – c) = a . (i)

b (1 – a) (1 – c) = b              . (ii)

c (1 – b) (1 – a) = γ             . (iii)

(1 – a) (1 – b) (1 – c) = p     . (iv)

( α 2 β ) p = α β  

->a – ab – 2b + 2ab = ab Þ a = 2b . (v)

Again ( β 3 γ ) p = 2 β γ  

->b – bc – 3c + 3bc = 2bc Þ b = 3c   . (vi)

P ( B 1 ) P ( B 3 ) = a c = 2 b b / 3 = 6      

Q:  

Let three vectors  a , b a n d c be such that  c is coplanar with a a n d b , a . c = 7 a n d b  is perpendicular to c , w h e r e a = i ^ + j ^ + k ^ a n d b ^ = 2 i ^ + k ^ , then the value of 2 | a + b + c | 2  is____________.

Read more
A: 

c = α a + β b . . . . . ( i )

a . c = 7 b . c = 0           

a = i ^ + j ^ + k ^ | a | = 3          

b = 2 i ^ + k ^ | b | = 5 a . b = 2 + 1 = 1           

From   ( i ) a . c = α | a | 2 β

3 α β = 7 . . . . . . . . . . ( i i )        

b ¯ . c ¯ = α b ¯ . a ¯ + β | b | 2 α + 5 β = 0 . . . . . . . ( i i i )     

Solving α = 5 2 a n d β = 1 2  

2 | a + b + c | 2 = 7 5       

Q:  

Let P = [ 3 1 2 2 0 α 3 5 0 ] w h e r e α R . Suppose Q = [qij] is a matrix satisfying PQ = kI3 for some non-zero k R. If  q 2 3 = k 8 a n d | Q | = k 2 2 , t h e n α 2 + k 2 is equal to_________.

Read more
A: 

P = [ 3 1 2 2 0 α 3 5 0 ] a n d Q = [ q i j ] P Q = k l 3           

q 2 3 = k 8 a n d | Q | = k 2 2            

  P Q = k l 3 P 1 = Q k = ( 3 1 2 2 0 α 3 5 0 ) 1

| p | | Q | = ( k l 3 ) 8 . k 2 2 = k 3

k 0 k = 4

α 2 + k 2 = 1 + 1 6 = 1 7 .         

Q:  

If   a a ( | x | + | x 2 | ) d x = 2 2 , ( a > 2 ) a n d [ x ] denotes the greatest integer   x , then a a ( x + [ x ] ) d x  is equal to__________.

Read more
A: 

  a a ( | x | + | x 2 | ) d x = 2 2 , a > 2

a 0 ( 2 x + 2 ) d x + 0 2 ( x x + 2 ) d x + 2 a ( 2 x 2 ) d x = 2 2

2 a 2 + 2 = 2 0 a 2 = 9 a = 3

3 3 ( x + [ x ] ) d x = 3 3 ( 2 x { x } ) d x = 3 3 2 x d x + 6 0 1 x d x = 6 . x 2 2 | 0 1 = 3           

          

            

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

JEE Mains 2021

JEE Mains 2021

Q&A Icon
Commonly asked questions
Q:  

Let L be a common tangent line to the curves  Then the square of the slope of the line L is………….

Read more
A: 

Given curves x 2 9 + y 4 4 = 1 . . . . . . . . . ( i )

&     x 2 + y 2 = 3 1 4 . . . . . . . . . . . ( i i )      

Equation of any tangent to (i) be y = mx +  9 m 2 + 4 . . . . . . . . . . . . ( i i i )

For common tangent (iii) also should be tangent to (ii) so by condition of common tangency

9 m 2 + 4 = 3 1 4 ( 1 + m 2 )

OR 36m2 + 16 = 31 + 31m2

=>m2 = 3

Q:  

If the arithmetic mean and geometric mean of the pth and qth terms of the sequence -16,8,-4,2,…. satisfy the equation 4x2 – 9x + 5 = 0, then p + q is equation to……….

Read more
A: 

Given sequence is -16, 8, -4, 2, .....

are in G.P. with first term a = -16 & common ratio r =  1 2

Now t p = a r P 1 = 1 6 ( 1 2 ) p 1 & t q = a r q 1 = 1 6 ( 1 2 ) q 1

So A.M. = -8   [ ( 1 2 ) p 1 + ( 1 2 ) q 1 ] = α ( l e t )

Given equation is 4x2 – 9x + 5 = 0 gives x = 1 , 5 4

From roots we get possible value of b = 1 so

1 6 ( 1 2 ) P + q 2 2 = 1 O R ( 1 2 ) p + q 2 2 = 1 1 6 ( 1 2 ) 4

p + q 2 2 = 4 p + q = 1 0

Q:  

The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is…….

A: 

18 = 32 * 2

For G.C.D to be 3. no. of four digits should be only multiple of 3, but not multiple of 9 & also should not be even.

As we know no. of the form                          9 k -> 1000

9 k + 1 -> 1000

9 k + 2 -> 1000

9 k + 3 -> 1000  -> Total no. = 2000

9 k + 4 -> 1000

9 k + 5 -> 1000

9 k + 6 ->1000

9 k + 7 -> 1000

9 k + 8 -> 1000

In which half will be even & half be odd so Required no. = 1000

Q:  

Let a and b be two real numbers such that α + β = 1 and αβ = -1. Let  P n = ( α ) n + ( β ) n ,  Pn-1 = 11 and Pn+1 = 29 for some integer n 1 .  Then, the value of p n 2  is……

Read more
A: 

Given P n = α n + β n , P n 1 = 1 1 & P n + 1 = 2 9

    P n = α n 2 . α 2 + β n 2 . β 2 . . . . . . . . . ( i )                          

Now quadratic equation having roots α & β will be x2 – (α + β)x + αβ = 0

i.e.         x2 – x – 1 = 0,     put x = α and put x = β

So          α2 = α + 1           & β2 = β + 1

(i)     P n = α n 2 ( α + 1 ) + β n 2 ( β + 1 )

P n = P n 1 + P n 2          

= > P n 2 = 2 3 4  

Q:  

Let z be those complex numbers which satisfy

| z + 5 | 4 a n d z ( 1 + i ) + z ¯ ( 1 i ) 1 0 , i = 1 .

If the maximum value of | z + 1 | 2 i s α + β 2 , then the value of (α + β) is…….

Read more
A: 

G i v e n | z + 5 | 4 . . . . . . . . . . ( i )

->Represent a circle ( x + 5 ) 2 + y 2 1 6

= z ( 1 + i ) + z ¯ ( 1 i ) 1 0 . . . . . . . . . . ( i i )

->Represent a line X – y 5

So max |z + 1|2 = AQ2

= ( 4 2 2 ) 2 + 8

= 3 2 + 1 6 2 = α + β 2  

Hence α + β) = 48

Q:  

Let ta be an integer such that all the real roots of the polynomial 2x5 + 5x4 + 10x3 + 10x2 + 10x + 10 lie in the interval (a, a +1). Then | a |  is equal to……….

Read more
A: 

Given f ( x ) = 2 x 5 + 5 x 4 + 1 0 x 3 + 1 0 x 2 + 1 0 x + 1 0

f ( 1 ) = 3 > 0 & f ( 2 ) = 3 4 < 0

So at least one root will lie in (2, 1)

now f ' ( x ) = 1 0 x 4 + 2 0 x 3 + 3 0 x 2 + 2 0 x + 1 0

= 1 0 [ x 4 + 2 x 3 + 3 x 2 + 2 x + 1 ]

= 1 0 x 2 ( x + 1 x + 1 ) 2 > 0 x R

So, f (x) be purely increasing function so exactly one root of f (x) that will lie in (-2, 1). Hence |a| = 2

Q:  

Let X1, X2,…..X18 be eighteen observations such that i = 1 1 8 ( X i α ) = 3 6 a n d i = 1 1 8 ( X i β ) 2 = 9 0 ,  where a and b are distinct real numbers. If the standard deviation of these observations is 1, then the value of   | α β | i s . . . . . . . .

Read more
A: 

Given   i = 1 1 8 ( x i α ) = 3 6 i . e i = 1 1 8 x i 1 8 α = 3 6 . . . . . . . . . . ( i )

&       i = 1 1 8 ( x i β ) 2 = 9 0 i . e i = 1 1 8 x i 2 2 β x i + 1 8 β 2 = 9 0 . . . . . . . . . . . . . ( i i )         

(i) & (ii)  i = 1 1 8 x i 2 = 9 0 1 8 β + 3 6 β ( α + 2 ) . . . . . . . . . . . . . ( i i i )

Now variance σ 2 = x i 2 n ( x i n ) 2 = 1 given

=> (α - β) (α - β + 4) = 0

Since   α β s o | α β | = 4

Q:  

If Im,n =   0 1 x m 1 ( 1 x ) n 1 d x , f o r m , n 1 , a n d 0 1 x m 1 + x n 1 ( 1 + x ) m + n d x = α I m , n , α R , then a equals…....

Read more
A: 

Given l m , n = 0 1 x m 1 ( 1 x ) n 1 d x . . . . . . . . . . . . ( i )  

put 1 - x = t { x = 0 , t = 1 x = 1 , t = 0

dx = -dt

From (i) l m , n = 1 0 ( 1 t ) m 1 . t n 1 ( d t )

l m , n = 0 1 t n 1 ( 1 t ) m 1 d t = 0 1 x n 1 ( 1 x ) m 1 d x . . . . . . . . . . ( i i )    

P u t x = 1 1 + y i n ( i ) t h e n d x = 1 ( 1 + y ) 2 d y                          

(i)  l m , n = 0 1 ( 1 + y ) m 1 ( 1 1 1 + y ) n 1 ( d y ( 1 + y ) 2 ) = 0 y n 1 ( 1 + y ) m + n d y . . . . . . . . . . ( i i i )

Similarly by (ii) l m , n = 0 y m 1 ( y + 1 ) m + n d y . . . . . . . . . . ( i v )

Adding (iii) & (iv) 2 l m , n = 0 y n 1 + y m + 1 ( y + 1 ) m + n

Putting  1 z { y = 1 , z = 1 y = , z = 0 d y = 1 z 2 d z  

Hence l m , n = 0 1 x m 1 + x n 1 ( 1 + x ) m + n dx = α lm, n

=> α = 1

Q:  

Let the normal at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3, -3) and ( 4 , 2 2 ) and given that a 2 2 b = 3 , then ( a 2 + b 2 + a b )  is equal to…………

Read more
A: 

Let the equation of normal is Y – y = - 1 m ( X x )  

where m is slope of tangent to the given curve then

  Y y = d x d y ( X x )         

It passes through (a, b) so b – y = d x d y ( a x )

=> (a – x) dx = (y – b) dy

On integration     a x x 2 2 = y 2 2 b y + c . . . . . . . . . ( i )  

(ii) passes through (3, -3) &  then

3a – 3b – c = 9       .........(ii)

& 4a - 2 2 b - c = 12           .........(iii)

also given  a 2 2 b = 3 . . . . . . . . . . . . ( i v )

Solve (ii), (iii) & (iv) b = 0, a = 3

Hence a2 + b2 + ab = 9

Q:  

If the matrix A = [ 1 0 0 0 2 0 3 0 1 ]  satisfies the equation A20 = αA19 + βA = [ 1 0 0 0 4 0 0 0 1 ]  for some real numbers α and β, then β - α is equal to…………

Read more
A: 

  A 2 = [ 1 0 0 0 2 0 3 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 2 0 0 0 1 ]

A 3 = [ 1 0 0 0 2 2 0 0 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 3 0 3 0 1 ]
A 4 [ 1 0 0 0 2 3 0 3 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 4 0 0 0 1 ]

Similarly we get A19 =   = [ 1 0 0 0 2 1 9 0 3 0 1 ] & A 2 0 = [ 1 0 0 0 2 2 0 0 0 0 1 ]

[ 1 0 0 0 4 0 0 0 1 ]

1 + α + β = 1 g i v e s α + β = 0 . . . . . . . . ( i )

2 2 0 + ( 2 1 9 2 ) α = 4 f r o m ( i )

α = 4 2 2 0 2 1 9 2 = 4 ( 1 2 1 8 ) 2 ( 1 2 1 8 ) = 2

So, β = 2

Hence β - α = 4

Q:  

Let f : R -> R be defined as

f ( x ) = { 2 s i n ( π x 2 ) , i f x < 1 | a x 2 + x + b | , i f 1 x 1 s i n ( π x ) , i f x > 1

If f(x) is continuous on R, then a + b equals:

A: 

Given

( x ) = { 2 s i n ( π x 2 ) , x < 1 | a x 2 + x + b | , 1 x 1 s i n π x , x > 1

If f (x) is continuous for all x R then it should be continuous at x = 1 & x = -1

At x = -1, L.H.L = R.H.L. Þ 2 = |a + b - 1|

=>a + b – 3 = 0  OR  a + b + 1 = 0 . (i)

=>a + b + 1 = 0 . (ii)

           (i) & (ii), a + b =-1

Try these practice questions

Q1:

Let f(x) = 0 x e t f ( t ) d t + e x  be a differentiable function for all x R. Then f(x) equals:

View Full Question

Q2:

If vectors a 1 = x i ^ j ^ + k ^ a n d a 2 = i ^ + y j ^ + z k ^  are collinear, then a possible unit vector parallel to the vector x i ^ + y j ^ + z k ^  is:

View Full Question

Q3:

If the locus of the mid-point of the line segment from the point (3, 2) to a point on the circle, x2 + y2 = 1 is a circle of radius r, then r is equal to:

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

JEE Mains 2020

JEE Mains 2020

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Five Exam

Student Forum

chatAnything you would want to ask experts?
Write here...