Maths NCERT Exemplar Solutions Class 11th Chapter Five: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 11th Chapter Five 2025 ( Maths NCERT Exemplar Solutions Class 11th Chapter Five )

Raj Pandey
Updated on Aug 28, 2025 14:22 IST

By Raj Pandey

Table of content
  • Complex Numbers and Quadratic Equations Short Answer Type Questions
  • Complex Numbers and Quadratic Equations Long Answer Type Questions
  • Complex Numbers and Quadratic Equations Other Questions
  • Complex Numbers and Quadratic Equations Objective Type Questions
  • JEE MAINS 2 April 2025
  • qqqqqqqqqqq
  • pppppppppppppppppp
  • JEE Mains 2021
  • JEE Mains 2020
View More
Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Short Answer Type Questions

1. For a positive integer n , find the value of ( 1 i ) n 1 1 i n .

Sol. W e h a v e ( 1 i ) n ( 1 1 i ) n = [ ( 1 i ) ( 1 1 i ) ] n = [ ( 1 i ) ( 1 1 i × i i ) ] n = [ ( 1 i ) ( 1 i i 2 ) ] n = [ ( 1 i ) ( 1 + i ) ] n [ i 2 = 1 ] = [ 1 i 2 ] n = [ 1 + 1 ] n = 2 n H e n c e , ( 1 i ) n ( 1 1 i ) n = 2 n .

2. Evaluate n = 1 ( 1 + i ) 3 , where n .

Sol. W e h a v e n = 1 1 3 ( i n + i n + 1 ) = ( i + i 2 ) + ( i 2 + i 3 ) + ( i 3 + i 4 ) + ( i 4 + i 5 ) + ( i 5 + i 6 ) + ( i 6 + i 7 ) + ( i 7 + i 8 ) + ( i 8 + i 9 ) + ( i 9 + i 1 0 ) ( i 1 0 + i 1 1 ) + ( i 1 1 + i 1 2 ) + ( i 1 2 + i 1 3 ) + ( i 1 3 + i 1 4 ) = i + 2 ( i 2 + i 3 + i 4 + i 5 + i 6 + i 7 + i 8 + i 9 + i 1 0 + i 1 1 + i 1 2 + i 1 3 ) + i 1 4 = i + 2 [ 1 i + 1 + i 1 i + 1 + i 1 i + 1 + i ] + ( 1 ) = i + 2 ( 0 ) 1 1 + i H e n c e , n = 1 1 3 ( i n + i n + 1 ) = 1 + i .
Q&A Icon
Commonly asked questions
Q:  

For a positive integer n , find the value of ( 1 i ) n 1 1 i n .

Q:  

Evaluate n = 1 ( 1 + i ) 3 , where n ? .

Q:  

If ( 1 + i ) 3 1 i 3 ( 1 i ) 3 1 + i 3 = x + i y , then find ( x , y ) .

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Long Answer Type Questions

1. If z ˉ + 1 = z + 2 ( 1 + i ) , then find z .

Sol. G i v e n t h a t : | z + 1 | = z + 2 ( 1 + i ) L e t z = x + i y S o , | x + i y + 1 | = ( x + i y ) + 2 ( 1 + i ) | ( x + 1 ) + i y | = x + i y + 2 + 2 i | ( x + 1 ) + i y | = ( x + 2 ) + ( y + 2 ) i ( x + 1 ) 2 + y 2 = ( x + 2 ) + ( y + 2 ) i [ | x + i y | = x 2 + y 2 ] S q u a r i n g b o t h s i d e s ( x + 1 ) 2 + y 2 = ( x + 2 ) 2 + ( y + 2 ) 2 . i 2 + 2 ( x + 2 ) ( y + 2 ) i x 2 + 1 + 2 x + y 2 = x 2 + 4 + 4 x y 2 4 y 4 + 2 ( x + 2 ) ( y + 2 ) i C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t x 2 + 1 + 2 x + y 2 = x 2 + 4 x y 2 4 y a n d 2 ( x + 2 ) ( y + 2 ) = 0 2 y 2 2 x + 4 y + 1 = 0 ( i ) a n d ( x + 2 ) ( y + 2 ) = 0 ( i i ) x + 2 = 0 o r y + 2 = 0 x = 2 o r y = 2 N o w p u t x = 2 i n e q n . ( i ) 2 y 2 2 × ( 2 ) + 4 y + 1 = 0 2 y 2 + 4 + 4 y + 1 = 0 2 y 2 + 4 y + 5 = 0 b 2 4 a c = ( 4 ) 2 4 × 2 × 5 = 1 6 4 0 = 2 4 < 0 n o r e a l r o o t s . N o w p u t y = 2 i n e q n . ( i ) 2 ( 2 ) 2 2 x + 4 ( 2 ) + 1 = 0 8 2 x 8 + 1 = 0 x = 1 2 a n d y = 2 H e n c e , t h e v a l u e o f z = x + i y = ( 1 2 2 i ) .
2. If arg  ( z 1 ) = arg  ( z + 3 i ) , then find x 1 : y , where z = x + i y .
Sol. G i v e n t h a t : a r g ( z 1 ) = a r g ( z + 3 i ) a r g ( x + y i 1 ) = a r g ( x + y i + 3 i ) a r g [ ( x 1 ) + y i ] = a r g [ x + ( y + 3 ) i ] t a n 1 y x 1 = t a n 1 y + 3 x y x 1 = y + 3 x x y = ( x 1 ) ( y + 3 ) x y = x y + 3 x y 3 3 x y = 3 3 x 3 = y 3 ( x 1 ) = y ( x 1 ) y = 1 3 x 1 : y = 1 : 3 H e n c e , x 1 : y = 1 : 3 .
Q&A Icon
Commonly asked questions
Q:  

If arg (z1)=arg (z+3i) , then find x 1 : y , where z = x + i y .

Q:  

If ? z ? + 1 ? = z + 2 ( 1 + i ) , then find z .

Q:  

Show that   ? z 2 z + 3 ? = 2 represents a circle. Find its centre and radius.

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Other Questions

1. What is the conjugate of 2 i ( 1 2 i )  z
Sol. G i v e n t h a t z = 2 i ( 1 2 i ) 2 = 2 i 1 + 4 i 2 4 i = 2 i 1 4 4 i = 2 i 3 4 i = 2 i 3 4 i × 3 + 4 i 3 + 4 i = 6 + 8 i + 3 i 4 i 2 ( 3 ) 2 ( 4 i ) 2 = 6 + 1 1 i + 4 9 1 6 i 2 = 2 + 1 1 i 9 + 1 6 = 2 2 5 + 1 1 2 5 i z ¯ = 2 2 5 1 1 2 5 i H e n c e , z ¯ = 2 2 5 1 1 2 5 i
2. If z 1 = z 2 = 1  , is it necessary that  z 1 = z 2  ?
Sol. L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | x 1 + y 1 i | = | x 2 + y 2 i | x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 + y 1 2 = x 2 2 + y 2 2 x 1 2 = x 2 2 a n d y 1 2 = y 2 2 x 1 = ± x 2 a n d y 1 = ± y 2 S o , z 1 = x 1 + y 1 i a n d z 2 = ± x 2 ± y 2 i z 1 z 2 H e n c e , i t i s n o t n e c e s s a r y t h a t z 1 = z 2 .
Q&A Icon
Commonly asked questions
Q:  

What is the conjugate of 2i(12i) z

Q:  

If ?z1?=?z2?=1 , is it necessary that z1=z2 ?

Q:  

If ?z1?=?z2?=1 , is it necessary that z1=z2 ?

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

Complex Numbers and Quadratic Equations Objective Type Questions

1. s i n x + i   c o s   2 x and  c o s x i   s i n   2 x  are conjugate to each other for:

(a)  x = n π

(b)  x = n + π 2 + π 2

(c)  x = 0

(d) no value of x

Sol.  L e t z = s i n x + i c o s 2 x z ¯ = s i n x i c o s 2 x B u t w e a r e g i v e n t h a t z ¯ = c o s x i s i n 2 x s i n x i c o s 2 x = c o s x i s i n 2 x C o m p a r i n g t h e r e a l a n d i m a g i n a r y p a r t s , w e g e t s i n x = c o s x a n d c o s 2 x = s i n 2 x t a n x = 1 a n d t a n 2 x = 1 t a n x = t a n π 4 a n d t a n 2 x = t a n π 4 x = n π + π 4 , n I a n d 2 x = n π + π 4 x = 2 x 2 x x = 0 x = 0 H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

2. The real value of  α  for which the expression  1 i s i n   α 1 + i s i n   α    is purely real is:

(a)  ( n + 1 ) + π 2

(b)  ( 2 n + 1 ) π 2

(c)  n π

(d) None of these, where  n

Sol.  L e t z = 1 i s i n α 1 + 2 i s i n α = ( 1 i s i n α ) ( 1 2 i s i n α ) ( 1 + 2 i s i n α ) ( 1 2 i s i n α ) = 1 2 i s i n α i s i n α + 2 i 2 s i n 2 α ( 1 ) 2 ( 2 i s i n α ) 2 = 1 3 i s i n α 2 s i n 2 α 1 4 i 2 s i n 2 α = ( 1 2 s i n 2 α ) 3 i s i n α 1 + 4 s i n 2 α = 1 2 s i n 2 α 1 + 4 s i n 2 α 3 s i n α 1 + 4 s i n 2 α . i Since , z i s p u r e l y r e a l , t h e n 3 s i n α 1 + 4 s i n 2 α = 0 s i n α = 0 S o , α = n π , n N . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .
Q&A Icon
Commonly asked questions
Q:  

If z  is a complex number, then

(a) z 2 > z 2  

(b) z 2 = z 2  

(c) z 2 < z 2    

(d) z 2 z 2  

Read more
Q:  

s i n x + i   c o s   2 x and cosxi sin 2x are conjugate to each other for:

(a)  x = n π

(b)  x = n + π 2 + π 2

(c)  x = 0

(d) no value of x

Read more
Q:  

The real value of α for which the expression 1isin α1+isin α  is purely real is:

(a)  ( n + 1 ) + π 2

(b)  ( 2 n + 1 ) π 2

(c)  n π

(d) None of these, where n?

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

JEE MAINS 2 April 2025

JEE MAINS 2 April 2025

Try these practice questions

Q1:

Let f(x) be a differentiable function defined on [0, 2] such that f’(x) = f’(2 – x) for all x ( 0 , 2 ) , x ( 0 , 2 ) , f(0) = 1 and f(2) = e2. Then the value of   0 2 f ( x ) d x i s

View Full Question

Q2:

The value of the integral 1 3 [ x 2 2 x 2 ] d x ,  where [x] denotes the greatest integer less than or equal to x, is

View Full Question

Q3:

For the system of linear equations:

x – 2y = 1, x – y + kz = -2, ky + 4z = 6, k   R ,

Consider the following statements:

(A) The system has unique solution if   k 2 , k 2 .

(B) The system has unique solution if k = -2.

(C) The syste

View Full Question

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

qqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Q&A Icon
Commonly asked questions
Q:  

Let λ  be an integer. IF the shortest distance between the lines x λ = 2 y 1 = 2 z  and x = y + 2 λ = z λ i s 7 2 2 , then the value of   | λ | i s . . . . . . . . . . . . . . . . . . .

Read more
Q:  

For integers n and r, let  

The maximum value of k for which the sum

i = 0 k ( 1 0 i ) ( 1 5 k i ) + i = 0 k + 1 ( 1 2 i ) ( 1 3 k + 1 i )

Read more
Q:  

Let i = 1 .  If   ( 1 + i 3 ) 2 1 ( 1 i ) 2 4 + ( 1 + i 3 ) 2 1 ( 1 + i ) 2 4 = k , and n =   [ | k | ] be the greatest integral part of | k | . Then j = 0 n + 5 ( j + 5 ) 2 j = 0 n + 5 ( j + 5 )  is equal to………………..

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

pppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppp

Q&A Icon
Commonly asked questions
Q:  

  l i m n t a n { r = 1 n t a n 1 ( 1 1 + r + r 2 ) } is equal to___________.

Q:  

If the least and the largest real values of a, for which the equation z + |z1|+2i=0(zCandi=1) a  has a solution, are p and q respectively, then 4(p2+q2)  is equal to

Read more
Q:  

Let M be any 3 × 3 matrix with entires from the set {0, 1, 2}. The maximum number of such matrices, for which the sum of diagonal elements MTM is seven is____________.

Read more
Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

JEE Mains 2021

JEE Mains 2021

Q&A Icon
Commonly asked questions
Q:  

Let L be a common tangent line to the curves  Then the square of the slope of the line L is………….

Read more
Q:  

If the arithmetic mean and geometric mean of the pth and qth terms of the sequence -16,8,-4,2,…. satisfy the equation 4x2 – 9x + 5 = 0, then p + q is equation to……….

Read more
Q:  

The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is…….

Try these practice questions

Q1:

Let f(x) = 0 x e t f ( t ) d t + e x  be a differentiable function for all x R. Then f(x) equals:

View Full Question

Q2:

If vectors a 1 = x i ^ j ^ + k ^ a n d a 2 = i ^ + y j ^ + z k ^  are collinear, then a possible unit vector parallel to the vector x i ^ + y j ^ + z k ^  is:

View Full Question

Q3:

If the locus of the mid-point of the line segment from the point (3, 2) to a point on the circle, x2 + y2 = 1 is a circle of radius r, then r is equal to:

Maths NCERT Exemplar Solutions Class 11th Chapter Five Logo

JEE Mains 2020

JEE Mains 2020

qna

Maths NCERT Exemplar Solutions Class 11th Chapter Five Exam

Student Forum

chatAnything you would want to ask experts?
Write here...