Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

log? (18x-x²-77)>0 ⇒ 18x-x²-77>1 ⇒ x²-18x+78<0. Roots are 93.
log? (.)>0 ⇒ log? (.)>1 ⇒ 18x-x²-77>3 ⇒ x²-18x+80<0 (x-8) (x-10)<0.
8Domain is (8,10). a=8, b=10.
I = ∫? ¹? sin³x/ (sin³x+sin³ (18-x)dx. Using King's property.
I = ∫? ¹? sin³ (18-x)/ (sin³ (18-x)+sin³x)dx.
2I = ∫? ¹? dx = 2. I=1.

New answer posted

a month ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

I = ∫? π/? π/? dx/ (1+e^ (xcosx) (sin? x+cos? x). Using ∫? f (x)dx = ∫? f (a+b-x)dx. a+b=0.
I = ∫? π/? π/? dx/ (1+e? ) (sin? x+cos? x) = ∫? π/? π/? e? dx/ (e? +1) (sin? x+cos? x).
2I = ∫? π/? π/? dx/ (sin? x+cos? x) = 2∫? π/? dx/ (sin? x+cos? x).
I = ∫? π/? sec? xdx/ (tan? x+1). Let t=tanx.
I = ∫? ¹ (t²+1)dt/ (t? +1) = ∫? ¹ (1+1/t²)dt/ (t²-√2t+1) (t²+√2t+1). No, this is hard.
I = ∫? ¹ (1+1/t²)dt/ (t-1/t)²+2). Let u=t-1/t. I = ∫ du/ (u²+2) = (1/√2)tan? ¹ (u/√2).
= π/ (2√2).

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given l m , n = 0 1 x m 1 ( 1 x ) n 1 d x . . . . . . . . . . . . ( i )  

put 1 - x = t { x = 0 , t = 1 x = 1 , t = 0

dx = -dt

From (i) l m , n = 1 0 ( 1 t ) m 1 . t n 1 ( d t )

l m , n = 0 1 t n 1 ( 1 t ) m 1 d t = 0 1 x n 1 ( 1 x ) m 1 d x . . . . . . . . . . ( i i )    

P u t x = 1 1 + y i n ( i ) t h e n d x = 1 ( 1 + y ) 2 d y                          

(i)  l m , n = 0 1 ( 1 + y ) m 1 ( 1 1 1 + y ) n 1 ( d y ( 1 + y ) 2 ) = 0 y n 1 ( 1 + y ) m + n d y . . . . . . . . . . ( i i i )

Similarly by (ii) l m , n = 0 y m 1 ( y + 1 ) m + n d y . . . . . . . . . . ( i v )

Adding (iii) & (iv) 2 l m , n = 0 y n 1 + y m + 1 ( y + 1 ) m + n

Putting  1 z { y = 1 , z = 1 y = , z = 0 d y = 1 z 2 d z  

Hence l m , n = 0 1 x m 1 + x n 1 ( 1 + x ) m + n dx = α lm, n

=> α = 1

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

0π|sin2x|dx

=20π/2sin2xdx =2  [cos2x2]0π/2 = 2 ( 1 2 ( 1 2 ) ) = 2

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

Information missing. The question was droppedby NTA.

 y=||x1|2|

Area bounded region = 12*4*2=4

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

Lth02*2 [32sin (π6+h)12cos (π6+h)]23h [32cosh12sinh]

=Lth04sin (π6+hπ6)23hsin (π3h)=23*1*132=43

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

 n=1100n1nex[x]dx=n=1100n1nex[x]dx

01ex[x]dx+12ex[x]dx+23ex[x]dx+.....+99100ex[x]dx

=e1+1e(e2e)+1e2(e3e2)+......+1e99(e100e99)

=e1+(e1)+(e1)+......+(e1),100times

=100(e1)

2nd method

n=1100n1nex[x]dx=n=1100n1ne{x}dx=n=1100(01exdx)=n=1100(e1)=100(e1)

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

 l=π/2π/2cos2x1+3xdx..........(i)

Using properties, abf(x)dx=abf(a+bx)dx

l=π/2π/2cos2x1+3xdx=π/2π/23xcos2x1+3xdx.......(ii)

Adding (i) and (ii), we get

2l=π/2π/2(1+3x)cos2x1+3xdx=π/2π/2cos2xdx=20π/2cos2xdx

l=π4

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l i m x 0 0 x 2 ( s i n t ) d t x 3     ( 0 0 )  applying L' Hospital rule

= l i m x 0 s i n ( x 2 ) . 2 x 3 x 2

= 2 3 , f o r x > 0

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Area of shaded region

2 0 3 ( 2 x 2 + 9 5 x 2 ) d x

= 2 0 3 ( 9 3 x 2 ) d x

0 3 ( 3 x 2 ) d x = 6 [ 3 x x 3 3 ] 0 3 = 6 [ 9 3 3 3 3 ] = 1 2 3

 

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.