Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

a month ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

l = 1 3 [ x 2 2 x + 1 3 ] d x = 1 3 [ ( x 1 ) 2 3 ] d x = 1 3 [ ( x 1 ) 2 ] d x 3 1 3 d x  .(A)

l 1 = 1 3 [ ( x 1 ) 2 ] d x P u t ( x 1 ) 2 = t

l 1 = 1 2 [ 0 0 1 d t t 1 2 d t t + 2 2 3 d t t + 3 3 4 d t t ] = 1 2 { | t 1 2 + 1 1 2 + 1 | 1 2 | + 2 t 1 2 + 1 1 2 + 1 | 2 3 + 3 t 1 2 + 1 1 2 + 1 ] 3 4 }      = 5 2 3  

Hence from (A)

= 5 2 3 3 6 = 1 2 3

2nd method       

1 3 [ ( x 1 ) 2 ] d x 6 . . . . . . . . . . . . . . ( A )

From (A), l=5236=123  

 

 

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Let sinθ= t s i n θ ( 2 s i n θ . c o s θ ) ( s i n 6 θ + s i n 4 θ + s i n 2 θ ) 2 s i n 4 θ + 3 s i n 2 θ + 6 2 s i n 2 θ

sinθ = t

cos θ. dθ = dt

u 1 / 2 1 2 d u = u 3 / 2 1 8 + C = ( 2 t 6 + 3 t 4 + 6 t 2 ) 3 / 2 1 8 + C = ( 2 s i n 6 θ + 3 s i n 4 θ + 6 s i n 2 θ ) 3 / 2 1 8 + C

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l i m n ( 1 + 1 + 1 2 + . . . . . . . + 1 n n 2 ) n limit is in the form of 1  

l = e x p ( l i m n 1 + 1 2 + 1 3 + . . . . . + 1 n n 2 )             

0 1 + 1 2 + 1 3 + . . . . . + 1 n 1 + 1 2 + 1 3 + . . . . + 1 n 2 n 1        

Taking limit   ( n )

l = exp (0) (from sandwich)

  l = 1          

Second Method :

1 + 1 2 + 1 3 + . . . . + 1 n l n ( n + 1 ) . . . . . . . ( i )
1 + 1 2 + 1 3 + . . . . . + 1 n 1 + 1 2 1 2 d x 1 + l n n . . . . . . . . . . ( i i )

From (i) & (ii)

l n ( n + 1 ) 1 + 1 2 + 1 3 + . . . . + 1 n 1 + I n n , n N , n 2           

As l i m n l n ( n + 1 ) n = 0  

and l i m n 1 + l n ( n ) n = 0  

from sandwich theorem

l i m n 1 + 1 2 + 1 3 + . . . . . + 1 n n = 0  

e 0 = 1   

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

l = 8 x 3 + 2 0 x 2 x 4 + 5 x 3 7 x 2 d x = 4 2 x + 5 x 2 + 5 x 7 d x = 4 l n | x 2 + 5 x 7 | + c

New answer posted

a month ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

ln=π/4π/2cotnxdx=π/4π/2cotn2x(cosec2x1)dx

=[cotn1xn1]π/4π/2ln2=1n1ln2

ln+ln2=1n1

n=4l4+l2=13n=5l5+l3=14n=6l6+l4=15}1l2+l4,1l3+l5,1l4+l6 are in A.P.

New answer posted

a month ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

x 2 = 2 ( y 1 2 )  

y2 = -4 (x – 1)

Required area = 2 1 0 [ 2 x + 1 1 x 2 2 ] d x  

= 2 [ 4 3 ( x + 1 ) 3 2 1 2 ( x x 3 3 ) ] 1 0          

= 2

 

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

s i n 2 x d x e { x π } = l

f ( x ) = s i n 2 x e { x π } is periodic with period =

l = 1 0 0 0 π s i n 2 x e x / π d x .

= 5 0 0 π 1 c o s 2 x e x / π d x = 5 0 0 π e x / π d x 5 0 0 π e x / π c o s 2 x d x

= 5 0 π ( 1 1 e ) [ 1 1 1 + 4 π 2 ] = 5 0 ( 1 1 e ) 4 π 3 1 + 4 π 2

α = 2 0 0 ( 1 1 e )

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

1 α ( α + 1 ) ( α + 2 ) . . . . . . . . . . ( α + 2 0 ) = A 0 α + A 1 α + 1 + A 2 α + 2 + . . . . . . + A 2 0 α + 2 0

Solving by partial fraction, we get

A 1 3 = 1 1 4 ! 7 ! , A 1 4 = 1 1 4 ! 6 ! a n d A 1 5 = 1 1 4 ! 5 !

A 1 4 + A 1 5 A 1 3 = 3 1 0 ( A 1 4 + A 1 5 A 1 3 ) 2 = ( 3 1 0 ) 2 1 0 0 ( A 1 4 + A 1 5 A 1 3 ) 2 = 9

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

A = y x + 2 s i n x + 2  

d y d x + y x = 2 s i n x + 2 . (i)

l . F = e ! l n x d x = x from (i) d (xy) = 2 x s i n x d x + 2 x d x

xy = 2 [-xcos x + sin x] + x2 + c       . (ii)

according to question, we get c = 0 y ( π 2 ) = 4 π + π 2

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l i m x 1 x n f ( 1 ) f ( x ) x 1  

= l i m x 1 9 x n ( x 6 + 2 x 4 + x 3 + 2 x + 3 ) x 1                

= 9n – 19 = 44 -> n = 7

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.