Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

 011. (1xn)2n+1dx using by parts we get,

(2n2+n+1)01 (1xn)2n+1dx=117701 (1xn)2n+1dx

2n2+n+1=1177n=24or492n=24

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

 tan (2tan115+sec152+2tan118)tan (2tan115+18115*18+sec152)

=tan (tan134+tan112)=tan (tan134+12138)

=tan (tan15458)=2

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  (113)(cosxsinx)(1+23sin2x)dx=(313)2sin(π4x)(23)(sinπ3+sin2x)dx

=(312)sin(π4x)(sinπ3+sin2x)dx=(3122)sin(π4x)sin(π6+x)cos(π6x)dx

=12[loge|tan(x2+π12)|loge|tan(x2+π6)|]+C=12loge|tan(x2+π12)tan(x2+π6)|+C

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

 a=limnk=1n2nn2+k2=limn1nk=1n21+ (kn)2

a=0121+x2dx=2tan1x]01=π2

f' (a2)=2f (a2)

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

 l=020π (|sinx|+|cosx|)2dx=200π (1+|sin2x|)dx=400π2 (1+|sin2x|)dx=40 (xcos2x2)0π2

=40 (π2+12+12) = 20 (p + 2)

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

 Letf(x)=logcosxcosecx=logcosecxlogcosx

f'(x)=logcosx.sinx(cosecxcotx(logcosecx)1cosx.(sinx))(logcosx)2

Atx=π4f'(π4)=log(12)+log2(log12)2=2log2atx=π4,loge(2f'(x))=4

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

 l=600π2 (sin6xsin4xsinx+sin4xsin2xsinx+sin2xsinx)dx

l=600π2 (2cos5x+2cos3x+2cosx)dx

l=60 (25sin5x+23sin3x+2sinx)|0π/2 = 104

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

 ln (x)=0xdt (t2+s)n

Applying integral by parts

ln (x)= [t (t2+5)n]0x0xn (t2+5)n1.2t2

10nln+1 (x)+ (12n)ln (x)=x (x2+5)n

Put n = 5

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

f(x)=13?xdx(1+x)2=13?t.2tdt1+t22 (put x=t )

=-t1+t213+tan-1?t13 [Applying by parts]

=-34-12+π3-π4=12-34+π12

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

 xxsin?x+cos?x2dx=xcos?xxcos?xdx(xsin?x+cos?x)2

=xcos?x-1xsin?x+cos?x+cos?x+xsin?xcos2?x1xsin?x+cos?xdx=-xsec?xxsin?x+cos?x+sec2?xdx=-xsec?xxsin?x+cos?x+tan?x+C

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.