Integrals

Get insights from 366 questions on Integrals, answered by students, alumni, and experts. You may also ask and answer any question you like about Integrals

Follow Ask Question
366

Questions

0

Discussions

5

Active Users

0

Followers

New question posted

3 months ago

0 Follower

New answer posted

3 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

Let????I=?e?3xIIcos3xIdx????????????????=cos3x.?e?3x?dx??(D(cos3x).?e?3x?dx)dx????????????????=cos3x.e?3x?3??(3cos2x(?sinx).e?3x?3)dx????????????????=?13e?3xcos3x??cos2xsinx.e?3xdx????????????????=?13e?3xcos3x??(1?sin2x)sinx.e?3xdx????????????????=?13e?3xcos3x??sinx.e?3xdx+?sin3xI.e?3xIIdx????????????????=?13e?3xcos3x??sinx.e?3xdx+sin3x?e?3xdx??(D(sin3x).?e?3x?dx)dx????????????????=?13e?3xcos3x??sinx.e?3xdx+sin3x.e?3x?3??(3sin2x.cosx.e?3x?3)dx????????????????=?13e?3xcos3x??sinx.e?3xdx?13e?3xsin3x+?sin2xcosx.e?3xdx????????????????=?13e?3xcos3x??sinx.e?3xdx?13e?3xsin3x+?(1?cos2x)cosx.e?3xdx?????????????I=?13e?3xcos3x?[sinx.e?3x?3??cosx.e?3x?3dx]?13e?3xsin3x+?cosx.e?3xdx??cos3x.e?3xdx????????????????=?13e?3xcos3x+sinx.e?3x3??cosx.e?3x?3dx?13e?3xsin3x+?cosx.e?3xdx?I?????????2I=e?3x?3[cos3x+sin3x]?[sinx.e?3x3??cosx.e?3x?3dx]+?cosx.e?3xdx????????????????=e?3x?3[cos3x+sin3x]+13sinx.e?3x?13?cosx.e?3xdx+?cosx.e?3xdx????????2I=e?3x?3[cos3x+sin3x]+13sinx.e?3x+23?cosx.e?3xdxNow,?I1=23?cosxI.e?3xIIdx????????????????=23[cosx.?e?3xdx??(D(cosx).?e?3x?dx)dx]????????????????=23[cosx.e?3x?3???sinx.e?3x?3dx]????????????????=23[cosx.e?3x?3?13?sinx.e?3xdx]

=2?9cosx.e?3x?29?sinx.e?3xdx???????????I1=2?9cosx.e?3x?29[sinx.e?3x?3??cosx.e?3x?3dx]???????????I1=?29cosx.e?3x+227sinx.e?3x?227?cosx.e?3xdx???????????I1=?29cosx.e?3x+227sinx.e?3x?19.23?cosx.e?3xdx???????????I1=?29cosx.e?3x+227sinx.e?3x?19.I1I1+19I1=?29cosx.e?3x+227sinx.e?3x???????10I19=?29cosx.e?3x+227sinx.e?3x???????????I1=?110cosx.e?3x+115sinx.e?3xSo,?????2I=?13e?3x[sin3x+cos3x]+13sinx.e?3x?110cosx.e?3x+115sinx.e?3x?????????????I=?16e?3x[sin3x+cos3x]+16sinx.e?3x?120cosx.e?3x+130sinx.e?3x????????????????=?16e?3x[sin3x+cos3x]+15sinx.e?3x?120cosx.e?3x????????????????=e?3x24[sin3x?cos3x]+3e?3x40[sinx

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t I = d x 1 + c o s x = d x 2 c o s 2 x / 2 [ ? 1 + c o s x = 2 c o s 2 x / 2 ] = 1 2 s e c 2 x 2 d x = 1 2 . 2 t a n x 2 + C = t a n x 2 + C H e n c e , t h e r e q u i r e d s o l u t i o n i s t a n x 2 + C .

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Consider, I=01tan1(2x11+xx2)dx

I=01tan1(x(1x)1+x(1x))dxI=01[tan1xtan1(1x)]dx(1)I=01[tan1(1x)tan1(11+x)]dxI=01[tan1(1x)tan1x]dxI=01[tan1(1x)tan1(x)]dx(2)

Adding (1) and (2), we get

2I=01[tan1xtan1(1x)tan1(1x)tan1x]dx2I=0I=0

Thus, the correct option is B.

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Giver, f(a + bx) = f(x). _________ (1)

Let I =abx+(x)=ab(a+bx)f(a+bx)dx_____(2)

{?abf(x)dx=abf(a+bx)dx.

=ab(a+bx)f(x)dx. ___________ (3) {because Equation (1)}

+=ab[(a+bx)f(x)+xf(x)]dx

2I=ab(a+bx+x)f(x)dx

2I=ab(a+b)f(x)dx

=a+b2abf(x)dx.

therefore, Option D is correct.

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let =cos2xdx(sinx+cosx)2

=cos2xsin2x(sinx+cosx)2dx{?cos2x=cos2xsin2x

=(cosx+sinx)(cosxsinx)(sinx+cosx)2dx{?a2b2=(x+b)(xb)

=(cosxsinx)sinx+cosx.dx

=log|sinx+cosx|+c{f(x)f(x)dx=log|f(x)|+c

So, option B is correct.

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let =dxex+ex

=dxex+1ex.=exdxex·ex+1

=exdxe2x+1

Putting ex = t

exdx = dt.

=dtt2+1.

= tan- 1 t + c

= tan- 1 (ex) + c

therefore, Option A is correct.

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I=01e23xdx

We know that,

abf(x)dx=(ba)limn1n[f(a)+f(a+h)+...+f(a(n1)h)]

Where, h=ban

Here, a=0,b=1 and f(x)e23x

h=10n=1n

01e23xdx=(10)limn1n[f(0)+f(0+h)+...+f(0+(n1)h)]

=limn1n[e2+e23x+...+e23(n1)h]=limn1n[e2{1+e3h+e6h+e9h+...+e3(n1)h}]=limn1n[e2{1(e3h)n1(e3h)}]=limn1n[e2{1e3nn1e3n}]=limn1n[e2(1e3)1e3n]=e2(e31)limn1n[1e3n1]=limn1n[e2(1e3)1e3n]=e2(e31)limn1n[1e3n1]

=e2(e31)limn(13)[3ne3n1]=e2(e31)3limn[3ne3n1]=e2(e31)3(1)=e1+e23=13(e21e)

New answer posted

3 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

3 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let I 0π4·2tan3xdx

=20π4tan2xtanxdx

=20π4(sec2x1)tanxdx{?sec2x=tan2x+1}

=20π4sec2xtanxdx20π4tanxdx

=2I1+2[log](cosx)0π4

=2I1+2[log(cosπ4)log(cos0)]

=2I1+2(log1/√2
log1)

=2I1+2(log·2120)

I=2I1+2*(12)log2=2I1log2.____(1).

Where I1=0π4sec2xtanxdx

Let tan x = t =>sec2xdx = dt

When, x = 0, t = tan 0. = 0

x=π4,t=tanπ4=1

1=01tdt=[t22]01=120=12

So, Equation (1) becomes,

=2*12log2

=1 - log 2.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.