Introduction to Three Dimensional Geometry

Get insights from 93 questions on Introduction to Three Dimensional Geometry, answered by students, alumni, and experts. You may also ask and answer any question you like about Introduction to Three Dimensional Geometry

Follow Ask Question
93

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Given pointisP (3, 4, 5) Distance ofPfromyzplane= (03)2+ (44)2+ (55)2=9=3unitsHence, thecorrectoptionis (a).

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is a long answer type question as classified in NCERT Exemplar

G i v e n t h a t e a c h e d g e o f t h e c u b o i d i s 2 u n i t s . C o o r d i n a t e s o f t h e v e r t i c e s a r e A ( 2 , 0 , 0 ) , B ( 2 , 2 , 0 ) , C ( 0 , 2 , 0 ) , D ( 0 , 2 , 2 ) , E ( 0 , 0 , 2 ) , F ( 2 , 0 , 2 ) , G ( 2 , 2 , 2 ) a n d O ( 0 , 0 , 0 ) .

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a long answer type question as classified in NCERT Exemplar

Letthegiven pointsareA(0,1,7),B(2,1,9),C(6,5,13)AB=(20)2+(1+1)2+(9+7)2=4+4+4=12=23BC=(62)2+(51)2+(13+9)2=16+16+16=48=43AC=(60)2+(5+1)2+(13+7)2=36+36+36=108=6323+43=63i.e.,AB+BC=ACAB:AC=23:63=1:3Hence, pointAdividesBandCin1:3externally.

New question posted

2 months ago

0 Follower 1 View

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

Given pointsareA(2,3,4),B(1,2,3)andC(4,1,10)AB=(2+1)2+(32)2+(4+3)2=9+1+49=59BC=(1+4)2+(21)2+(3+10)2=9+1+49=59AC=(2+4)2+(31)2+(4+10)2=36+4+196=236=259AB+BC=AC59+59=259Hence,A,BandCarecollinearandAC:BC=259:59=2:1Hence,CdividesABis2:1externally.

New answer posted

2 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

GiventhatADisthe internalbisectorofAABAC=BDDCAB=(52)2+(62)2+(9+3)2=9+16+144=169=13AC=(22)2+(72)2+(9+3)2=0+25+144=169=13ABAC=BDDC=1313BD=DCDisthemid pointofBCCoordinatesofD=(5+22,6+72,9+92)=(72,132,9)Hence,therequiredcoordinatesare(72,132,9).

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

C o o r d i n a t e s o f t h e c e n t r o i d G = ( 0 , 0 , 0 ) 0 = x 1 + x 2 + x 3 3 0 = a 2 + 4 3 a = 2 0 = y 1 + y 2 + y 3 3 0 = 1 + b + 7 3 b = 8 a n d 0 = z 1 + z 2 + z 3 3 0 = 3 5 + c 3 c = 2 H e n c e , t h e r e q u i r e d v a l u e s a r e a = 2 , b = 8 a n d c = 2 .

New answer posted

2 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

LetCandDbethe pointswhichdividesthegivenlineAB intothreeequalparts.Here,AC:CB=1:2Let(x1,y1,z1)bethecoordinatesofCx1=1*5+2*21+2=3andy1=1*8+2*11+2=2z1=1*3+2*31+2=1So,C=(3,2,1)NowDismid pointofCBLet(x2,y2,z2)bethecoordinatesofDx2=3+52=4andy2=822=5z2=312=1So,D=(4,5,1)Hence,therequiredcoordinatesareC(3,2,1)andD(4,5,1).

New answer posted

2 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

LetthecoordinatesofDbe(a,b,c)Weknowthatthediagonalsofa parallelogram bisecteachother.MidofACi.e.,O=(1+22,2+32,3+22)=(32,52,52)MidofBDi.e.,O=(a12,b22,c12)Equatingthecorrespondingcoordinate,wehavea12=32a=4b22=52b=7andc12=52c=6Hence,thecoordinatesofD(4,7,6).

New answer posted

2 months ago

0 Follower 7 Views

P
Payal Gupta

Contributor-Level 10

This is a short answer type question as classified in NCERT Exemplar

LetthecoordinatesoftheverticesofΔABCbeA(x1,y1,z1),B(x2,y2,z2)andC(x3,y3,z3)respectively. SinceD(5,7,11)mid pointofBC5=x2+x32x2+x3=10(i)7=y2+y32y2+y3=14(ii)11=z2+z32z2+z3=22(iii)E(0,8,5)isthemid pointofAB0=x1+x22x1+x2=0(iv)8=y1+y22y1+y2=16(v)5=z1+z22z1+z2=10(vi)

Similarly,F(2,3,1)isthemid pointofAC2=x1+x32x1+x3=4(vii)3=y1+y32y1+y3=6(viii)1=z1+z32z1+z3=2(ix)Addingeq.(i),(iv)and(vii)weget,2x1+2x2+2x3=10+0+4x1+x2+x3=7(x)Subtracting(i)from(x)weget,x1=710=3Subtracting(iv)from(x)weget,x3=70=7Subtracting(vii)from(x)weget,x2=74=3Addingeq.(ii),(v)and(viii)weget,2(y1+y2+y3)=14+16+6y1+y2+y3=18(xi)Subtracting(ii)from(xi)weget,y1=1814=4Subtracting(v)from(xi)weget,y3=1816=2Subtracting(viii)from(xi)weget,y2=186=12Similarly,Addingeq.(iii),(vi)and(ix)weget,2(z1+z2+z3)=22+102z1+z2+z3=15(xii)Subtracting(iii)from(xii)weget,z1=1522=7Subtracting(vi)from(xii)weget,z3=1510=5Subtractin<

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.