Introduction to Three Dimensional Geometry

Get insights from 93 questions on Introduction to Three Dimensional Geometry, answered by students, alumni, and experts. You may also ask and answer any question you like about Introduction to Three Dimensional Geometry

Follow Ask Question
93

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Let height of the wall = h than A(0, 0, 0) G (10, 10, h)

A G = 1 0 i ^ + 1 0 j ^ + h k ^              

B(10, 0, 0) A (0, 10, h)

B H = 1 0 i ^ + 1 0 j ^ + h k ^              

  c o s θ = 1 5 = B H . A G | B H | | A G |             

= 1 0 0 + 1 0 0 + h 2 ( 2 0 0 + h 2 )              

5 h 2 = 2 0 0 + h 2 h 2 = 5 0              

h = 5 2

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

A(2, 3, 9)

B(5, 2, 1)

C(1, λ , 8)

D( λ ,2, 3)

Δ=|3184λ27λ216|

AB=(3,1,8)

AC=(4,λ2,7)

AD=(λ2,1,6)

Δ=3[6λ+12+7]1(7λ1424)8(4(λ2)2)

=5718λ+3832+8(λ24λ+4)

=9557λ+8λ2

Δ=0λ1λ2=958

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

x + 2y + z = 14

r l i n e P Q : x 1 1 = y 2 2 = z 3 1 = t                

Q (1 + t, 2 + 2t, 3 + t)

 x + 2y + z = 14 ⇒ 1 + t + 4 + 4t + 3 + t = 14 ⇒ 6t = 6

t = 1

⇒ Q (2, 4, 4)

PQ = 1 + 4 + 1 = 6  

t a n 6 0 ° = P Q Q R Q R = P Q 3 = 2

ar (PQR) = 1 2 6 2 = 3  

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

A(2, 3, 9)

B(5, 2, 1)

C(1, λ , 8)

D( λ ,2, 3)

Δ = | 3 1 8 4 λ 2 7 λ 2 1 6 |           

    A B = ( 3 , 1 , 8 )

A C = ( 4 , λ 2 , 7 )            

A D = ( λ 2 , 1 , 6 )

Δ = 3 [ 6 λ + 1 2 + 7 ] 1 ( 7 λ 1 4 2 4 ) 8 ( 4 ( λ 2 ) 2 )

= 5 7 1 8 λ + 3 8 3 2 + 8 ( λ 2 4 λ + 4 )            

= 9 5 5 7 λ + 8 λ 2

Δ = 0 λ 1 λ 2 = 9 5 8                       

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

x + 2y + z = 14

r l i n e P Q : x 1 1 = y 2 2 = z 3 1 = t              

Q (1 + t, 2 + 2t, 3 + t)

x + 2y + z = 14 -> 1 + t + 4 + 4t + 3 + t = 14 Þ 6t = 6

t = 1

-> Q (2, 4, 4)

PQ = 1 + 4 + 1 = 6  

t a n 6 0 ° = P Q Q R Q R = P Q 3 = 2

ar (PQR) = 1 2 6 2 = 3  

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

Δ=412|1α1α010α1|=4

α=±8

(α, α), (α, α)and (α2, β) are collinear.

|αα1αα1α2β1|=0β=64

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

2 x 3 y = γ + 5 α x + 5 y = ( β + 1 ) } i n f i n i t e l y m a n y s o l u t i o n

2 α = 3 5 = ( γ + 5 β + 1 )

(i) 2 α = 3 5 = γ + 5 β + 1

α = 5 * 2 3 5x + 25 = -3β - 3

5 γ + 3 β = 2 8

| 9 α + 5 γ + 3 β | = | 9 * 1 0 3 2 8 |

= | 3 0 2 8 | = 5 8

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

Sum of all elements of AB=2  [Sum of natural number upto 100 which are neither divisible by 3 nor by 5]

=2 [100*10123 (33*342)5 (20*212)+15 (6*72)]

= 10100 – 3366 – 2100 + 630

= 5264

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Kindly consider the following figure

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t t h e v e r t i c e s o f t h e Δ A B C b e A ( x 1 , y 1 , z 1 ) , B ( x 2 , y 2 , z 2 ) a n d C ( x 3 , y 3 , z 3 ) Disthemid-pointofAB 1 = x 1 + x 2 2 x 1 + x 2 = 2 ( i ) 2 = y 1 + y 2 2 y 1 + y 2 = 4 ( i i ) a n d 3 = z 1 + z 2 2 z 1 + z 2 = 6 ( i i i ) Eisthemid-pointofBC 3 = x 2 + x 3 2 x 2 + x 3 = 6 ( i v ) 0 = y 2 + y 3 2 y 2 + y 3 = 0 ( v ) a n d 1 = z 2 + z 3 2 z 2 + z 3 = 2 ( v i ) Fisthemid-pointofAC 1 = x 1 + x 3 2 x 1 + x 3 = 2 ( v i i ) 1 = y 1 + y 3 2 y 1 + y 3 = 2 ( v i i i ) a n d 4 = z 1 + z 3 2 z 1 + z 3 = 8 ( i x ) A d d i n g e q . ( i ) , ( i v ) a n d ( v i i ) w e g e t 2 ( x 1 + x 2 + x 3 ) = 2 + 6 2 x 1 + x 2 + x 3 = 3 ( x ) A d d i n g e q . ( i i ) , ( v ) a n d ( v i i i ) w e g e t 2 ( y 1 + y 2 + y 3 ) = 4 + 0 + 2 y 1 + y 2 + y 3 = 3 ( x i ) A d d i n g e q . ( i i i ) , ( v i ) a n d ( i x ) w e g e t 2 ( z 1 + z 2 + z 3 ) = 6 + 2 8 z 1 + z 2 + z 3 = 6 ( x i i ) S u b t r a c t i n g ( i ) f r o m e q . ( x ) w e g e t x 3 = 3 2 = 1 x 3 = 1 S u b t r a c t i n g ( i v ) f r o m e q . ( x ) w e g e t x 1 = 3 6 = 3 x 1 = 3 S u b t r a c t i n g ( v i i ) f r o m e q . ( x ) w e g e t x 2 = 3 ( 2 ) = 5 x 2 = 5

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.