Maths Continuity and Differentiability

Get insights from 53 questions on Maths Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths Continuity and Differentiability

Follow Ask Question
53

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 12 Views

V
Vishal Baghel

Contributor-Level 10

y² + ln (cos² x) = y x ∈ (-π/2, π/2)
for x = 0 y = 0 or 1
Differentiating wrt x
⇒ 2y' - 2tan x = y'
At (0,0)y' = 0
At (0,1)y' = 0
Differentiating wrt x
2yy' + 2 (y')² - 2sec² x = y'
At (0,0)y' = -2
At (0,1)y' = 2
∴ |y' (0)| = 2

New answer posted

4 months ago

0 Follower 11 Views

V
Vishal Baghel

Contributor-Level 10

f (x) = {ae? +be? , -1For continuity at x=1
Lim (x→1? )f (x) = Lim (x→1? )f (x)
⇒ ae+be? ¹=c ⇒ b=ce-ae²
For continuity at x=3
Lim (x→3? )f (x) = Lim (x→3? )f (x)
⇒ 9c=9a+6c ⇒ c=3a
f' (0)+f' (2)=e
(ae? -be? ) at x=0 + (2cx) at x=2 = e
⇒ a-b+4c=e
From (1), (2) and (3)
a-3ae+ae²+12a=e
⇒ a (e²+13-3e)=e
⇒ a=e/ (e²-3e+13)

New answer posted

4 months ago

0 Follower 11 Views

R
Raj Pandey

Contributor-Level 9

LHL = lim (x→2? ) λ|x²-5x+6| / µ (5x-x²-6) = lim (x→2? ) -λ/µ
RHL = lim (x→2? ) e^ (tan (x-2)/ (x- [x]) = e¹
f (2) = µ
For continuity, -λ/µ = e = µ.
⇒ µ=e, -λ=µ²=e², λ=-e²
∴ λ + µ = -e² + e = e (1-e)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Using LMVT

f ' ( c ) = f ( 1 ) - f ( 0 ) 1 - 0

3 c 2 - 8 c + 8 = 16 - 11 1 - 0

3 c 2 - 8 c + 3 = 0

c = 4 - 7 3 ( 0,1 )

New answer posted

4 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

f (x) is discontinuous at integers x=1,2,3. P= {1,2,3}.
f (x) is not differentiable at integers and where x- [x]=1+ [x]-x ⇒ 2 (x- [x])=1 ⇒ {x}=1/2.
So at x=0.5, 1, 1.5, 2, 2.5.
Q= {0.5, 1, 1.5, 2, 2.5}. Sum of elements is not asked.
Number of elements in P=3, in Q=5. Sum = 8.
Let's check the solution. Q= {1/2, 1, 3/2, 5/2}.
The sum of number of elements: 3+5=8.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

P (x) = a (x-2)² + b (x-2) + c.
lim (x→2) P (x)/sin (x-2) = lim (x→2) P (x)/ (x-2) = P' (2) = 7.
P' (x) = 2a (x-2) + b. P' (2) = b = 7.
P' (x) = 2a.
P (3) = a (1)² + b (1) + c = a+b+c = 9.
Continuity at x=2 means lim f (x) = f (2).
lim (x→2) (a (x-2)²+b (x-2)+c)/ (x-2) = P' (2) = b=7. This is given.
The problem states f (2)=7.
P (x) = (x-2) (ax+b) form used in solution. Let's use this.
lim (x→2) (x-2) (ax+b)/sin (x-2) = lim (x→2) ax+b = 2a+b = 7.
P (3) = (3-2) (3a+b) = 3a+b=9.
Solving: a=2, b=3.
P (x) = (x-2) (2x+3).
P (5) = (5-2) (2*5+3) = 3 * 13 = 39.

New answer posted

4 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

For x>2, f (x) = ∫? ¹ (5+1-t)dt + ∫? ² (5+t-1)dt + ∫? (5+t-1)dt
= ∫? ¹ (6-t)dt + ∫? ² (4+t)dt + ∫? (4+t)dt
= [6t-t²/2]? ¹ + [4t+t²/2]? ² + [4t+t²/2]?
= (6-1/2) + (8+2 - (4+1/2) + (4x+x²/2 - (8+2)
= 5.5 + 5.5 + 4x+x²/2 - 10 = 4x+x²/2 + 1.
f (2? ) = 8+2+1 = 11. f (2? ) = 5 (2)+1 = 11. Continuous.
f' (x) = 4+x for x>2. f' (2? ) = 6.
For x<2, f' (x)=5. f' (2? )=5.
Not differentiable at x=2.

New answer posted

4 months ago

0 Follower 29 Views

V
Vishal Baghel

Contributor-Level 10

L.H.L = lim (x→0? ) (1 + |sin x|)³? /|sin x| = lim (h→0) (1 + sinh)³? /sinh = e³?
R.H.L = lim (x→0? ) e^ (cot 4x / cot 2x) = lim (x→0? ) e^ (tan 2x / tan 4x) = e¹/².
f (0) = b.
For continuity, e³? = e¹/² = b.
3a = 1/2 ⇒ a = 1/6. b = e¹/².
6a + b² = 6 (1/6) + (e¹/²)² = 1 + e

New answer posted

4 months ago

0 Follower 3 Views

J
Jaya Sharma

Contributor-Level 10

Some of the common mistakes that people usually make while using logarithmic differentiation have been mentioned below:

  • Not Multiplying by y: After logarithmic differentiation, it is mandatory to multiply by y to solve for dy/dx?
  • Incorrectly Applying the Chain Rule: Make sure that you have correctly used the chain rule whenever you are differentiating a logarithmic expression.
  • Using Wrong Logarithm: It is always advisable to use the natural logarithm (ln) instead of logarithms with other bases.
  • Ignoring Domain Restrictions: Natural logarithm is only defined for the positive real numbers; therefore, y>0 whenever you apply logarithmic diffe
...more

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.