Maths NCERT Exemplar Solutions Class 11th Chapter Five

Get insights from 113 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Five, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Five

Follow Ask Question
113

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t z = 2 i ( 1 2 i ) 2 = 2 i 1 + 4 i 2 4 i = 2 i 1 4 4 i = 2 i 3 4 i = 2 i 3 4 i * 3 + 4 i 3 + 4 i = 6 + 8 i + 3 i 4 i 2 ( 3 ) 2 ( 4 i ) 2 = 6 + 1 1 i + 4 9 1 6 i 2 = 2 + 1 1 i 9 + 1 6 = 2 2 5 + 1 1 2 5 i z ¯ = 2 2 5 1 1 2 5 i H e n c e , z ¯ = 2 2 5 1 1 2 5 i

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t : | z | = 4 a n d a r g ( z ) = 5 π 6 θ = 5 π 6 | z | = 4 r = 4 S o P o l a r f o r m o f z = r [ c o s θ + i s i n θ ] = 4 [ c o s 5 π 6 + i s i n 5 π 6 ] = 4 [ c o s ( π π 6 ) + i s i n ( π π 6 ) ] = 4 [ c o s π 6 + i s i n π 6 ] = 4 [ 3 2 + i . 1 2 ] = 2 3 + 2 i H e n c e , z = 2 3 + 2 i .

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

This is Other Questions as classified in NCERT Exemplar

G i v e n t h a t z = 2 i ( 1 2 i ) 2 = 2 i 1 + 4 i 2 4 i = 2 i 1 4 4 i = 2 i 3 4 i = 2 i 3 4 i * 3 + 4 i 3 + 4 i = 6 + 8 i + 3 i 4 i 2 ( 3 ) 2 ( 4 i ) 2 = 6 + 1 1 i + 4 9 1 6 i 2 = 2 + 1 1 i 9 + 1 6 = 2 2 5 + 1 1 2 5 i z ¯ = 2 2 5 1 1 2 5 i H e n c e , z ¯ = 2 2 5 1 1 2 5 i

New answer posted

2 months ago

0 Follower 6 Views

P
Payal Gupta

Contributor-Level 10

This is a True or False Type Questions as classified in NCERT Exemplar

( i ) C o m p a r i s o n o f t w o p u r e l y i m a g i n a r y c o m p l e x n u m b e r s i s n o t p o s s i b l e . H o w e v e r , t h e t w o p u r e l y i m a g i n a r y r e a l c o m p l e x n u m b e r s c a n b e c o m p a r e d . S o , i t i s ' F a l s e ' . ( i i ) L e t z = x + y i z . i = ( x + y i ) i = x i y w h i c h r o t a t e s a t a n g l e o f 1 8 0 0 S o , i t i s ' F a l s e ' . ( i i i ) L e t z = x + y i | z | + | z + 1 | = x 2 + y 2 + ( x 1 ) 2 + y 2 T h e v a l u e o f | z | + | z + 1 | i s m i n i m u m w h e n x = 0 , y = 0 i . e . , 1 . H e n c e , i t i s ' T r u e ' . ( i v ) L e t z = x + y i G i v e n t h a t : | z 1 | = | z i | t h e n | x + y i 1 | = | x + y i i | | ( x 1 ) + y i | = | x ( 1 y ) i | ( x 1 ) 2 + y 2 = x 2 + ( 1 y ) 2 ( x 1 ) 2 + y 2 = x 2 + ( 1 y ) 2 x 2 2 x + 1 + y 2 = x 2 + 1 + y 2 2 y 2 x + 2 y = 0 x y = 0 w h i c h i s a s t r a i g h t l i n e . S l o p e = 1 Nowequationofalinethroughthepoint(1,0)and(0,1) y 0 = 1 0 0 1 ( x 1 ) y = x + 1 w h o s e s l o p e = 1 . N o w t h e m u l t i p l i c a t i o n o f t h e s l o p e s o f t w o l i n e s = 1 * 1 = 1 , S o t h e y a r e p e r p e n d i c u l a r . H e n c e , i t i s ' T r u e ' .

( v ) L e t z = x + y i , z 0 a n d R e ( z ) = 0 Sincerealpartis0x=0 z = 0 + y i = y i I m ( z 2 ) = y 2 i 2 = y 2 w h i c h i s r e a l . H e n c e , i t i s ' F a l s e ' . ( v i ) G i v e n t h a t : | z 4 | < | z 2 | L e t z = x + y i | x + y i 4 | < | x + y i 2 | | ( x 4 ) + y i | < | ( x 2 ) + y i | ( x 4 ) 2 + y 2 < ( x 2 ) 2 + y 2 ( x 4 ) 2 + y 2 < ( x 2 ) 2 + y 2 ( x 4 ) 2 < ( x 2 ) 2 x 2 8 x + 1 6 < x 2 4 x + 4 8 x + 4 x < 1 6 + 4 4 x < 1 2 x > 3 H e n c e , i t i s ' T r u e ' . ( v i i ) L e t z 1 = x 1 + y 1 i a n d z 2 = x 2 + y 2 i | z 1 + z 2 | = | z 1 | + | z

New question posted

2 months ago

0 Follower 2 Views

New answer posted

2 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

( i ) | a z 1 ? b z 2 | 2 + | b z 1 + a z 2 | 2 ? ? ? ? ? ? = | a z 1 | 2 + | b z 2 | 2 ? 2 R e ( a z 1 . b z ¯ 2 ) + | b z 1 | 2 + | a z 2 | 2 + 2 R e ( a z 1 . b z ¯ 2 ) ? ? ? ? ? ? = | a z 1 | 2 + | b z 2 | 2 + | b z 1 | 2 + | a z 2 | 2 ? ? ? ? ? ? = ( a 2 + b 2 ) ( | z 1 | 2 + | z 2 | 2 ) ? ? ? ? ? ? ? ? H e n c e , ? ? t h e ? ? v a l u e ? ? o f ? ? t h e ? ? f i l l e r ? ? i s ? ? ( a 2 + b 2 ) ( | z 1 | 2 + | z 2 | 2 ) . ( i i ) ? 2 5 * ? 9 = ? 1 . 2 5 * ? 1 9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = 5 i * 3 i = 1 5 i 2 = ? 1 5 ? ? ? ? ? ? ? H e n c e , ? ? t h e ? ? v a l u e ? ? o f ? ? t h e ? ? f i l l e r ? ? i s ? ? ? 1 5 .

New question posted

2 months ago

0 Follower 2 Views

New question posted

2 months ago

0 Follower 4 Views

New question posted

2 months ago

0 Follower 2 Views

New answer posted

3 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

This is a long answer type question as classified in NCERT Exemplar

L e t z = r 1 ( c o s θ 1 + i s i n θ 1 ) a n d w = r 2 ( c o s θ 2 + i s i n θ 2 ) z w = r 1 r 2 [ ( c o s θ 1 i s i n θ 1 ) ] [ ( c o s θ 2 + i s i n θ 2 ) ] | z w | = r 1 r 2 = 1 [ G i v e n ] N o w a r g ( z ) a r g ( w ) = π 2 θ 1 θ 2 = π 2 a r g ( z w ) = π 2 z ¯ w = r 1 ( c o s θ 1 i s i n θ 1 ) r 2 ( c o s θ 2 + i s i n θ 2 ) = r 1 r 2 [ c o s θ 1 c o s θ 2 + i c o s θ 1 s i n θ 2 i s i n θ 1 c o s θ 2 i 2 s i n θ 1 s i n θ 2 ] = r 1 r 2 [ ( c o s θ 1 c o s θ 2 + s i n θ 1 s i n θ 2 ) + i ( c o s θ 1 s i n θ 2 s i n θ 1 c o s θ 2 ) ] = r 1 r 2 [ c o s ( θ 2 θ 1 ) + i s i n ( θ 2 θ 1 ) ] = r 1 r 2 [ c o s ( π 2 ) + i s i n ( π 2 ) ] = r 1 r 2 [ c o s π 2 i s i n π 2 ] = 1 . [ 0 i ] = i H e r e z ¯ w = i . H e n c e p r o v e d .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.