Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen

Get insights from 92 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen

Follow Ask Question
92

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1(x1)(2x3)2x2+x3=limx1(x1)(2x3)2x2+3x2x3=limx1(x1)(2x3)x(2x+3)1(2x+3)=limx1(x1)(2x3)(2x+3)(x1)=limx1(x1)(x+1)(2x3)(2x+3)(x1)(x+1)=limx1(x1)(2x3)(x1)(x+1)(2x+3)=limx12x3(x+1)(2x+3)Taking limitswehave=2(1)3(1+1)(2*1+3)=12*5=110Hence,thecorrectoptionis(b).

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ4sec2x2tanx1=limxπ41+tan2x2tanx1=limxπ4tan2x1tanx1=limxπ4(tanx+1)(tanx1)(tanx1)=limxπ4(tanx+1)=tanπ4+1=1+1=2.Hence,thecorrectoptionis(d).

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sinxx+11x=limx0sinxx+11x*x+1+1xx+1+1x=limx0sinx[x+1+1x]x+11+x=limx0sinx[x+1+1x]2x=12.limx0sinxx[x+1+1x]Taking limit ,weget=12*1*[0+1+10]=12*1*2=1Hence,thecorrectoptionis(c).

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0cosec xcot xx=limx01sinxcos xsinxx=limx01cosxxsinx=limx02sin2x2x.2sinx2cosx2=limx0sinx2xcosx2=limx0tanx2x=limx0tanx22*x2=12*1=12[?limx0tanxx=1]Hence,thecorrectoptionis(c).

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimθ01cos4θ1cos6θ=limθ02sin22θ2sin23θ[?1cosθ=2sin2θ2]=limθ0sin22θsin23θ=limθ0[sin2θsin3θ]2=limθ02θ03θ0[sin2θ2θ*2θsin3θ3θ*3θ]2=[2θ3θ]2=(23)2=49Hence,thecorrectoptionis(a).

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1xm1xn1=limx1xm(1)mx1xn(1)nx1=m(1)m1n(1)n1=mn[?limxaxnanxa=n.an1]Hence,thecorrectoptionis(b).

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0x2cosx1cosx=limx0x2cosx2sin2x2=1[?1cosx=2sin2x2]=limx0x24*4cosx2sin2x2=limx0x20(x2)2*2cosxsin2x2=limx20(x2sinx2)2*2cosx=2cos0=2*1=2[?limx0xsinx=1]Hence,thecorrectoptionis(a).

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an objective Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπsinxxπ=limxπsin (πx) (πx)=1 [? limx0sinxx=1andπx0xπ]Hence, thecorrectoptionis (c).

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenf(x)={x+2if x1,cx2if x>1LHLf(x)=limx1(x+2)=limh0(1h+2)=limh0(1h)=1RHLf(x)=limx1+cx2=limh0c(1+h)2=c Since the limitsexit.LHL=RHLc=1

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Givenf(x)={kcosxπ2x when xπ2,3when x=π2LHLf(x)=limxπ2kcosxπ2x=limh0kcos(π2h)π2(π2h)=limh0ksinhππ+2h=limh0ksinh2h=k2.1=k2[?limx0sinxx=1]RHLf(x)=limxπ2+kcosxπ2x=limh0kcos(π2+h)π2(π2+h)=limh0ksinhππ2h=limh0ksinh2h=k2[?limx0sinxx=1]Wearegiventhatlimxπ2f(x)=3So,k2=3k=6

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.