Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen

Get insights from 92 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Thirteen

Follow Ask Question
92

Questions

0

Discussions

3

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(3x+5)(1+tanx)dydx=ddx(3x+5)(1+tanx)=(3x+5)ddx(1+tanx)+(1+tanx)ddx(3x+5)[?ddx[f(x).g(x)]=f(x).g'(x)+g(x).f'(x)]=(3x+5)sec2x+(1+tanx)(3)=3xsec2x+5sec2x+3+3tanx

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety=(x+1x)3dydx=ddx(x+1x)3=ddx(x3+1x3+3x+3x)=ddx(x3+x3+3x+3.x1)=3x23x4+33.x2=3x23x4+33x2

New answer posted

2 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Lety= (x4+x3+x2+x+1x)dydx=ddx (x4+x3+x2+x+1x)=ddx (x3+x2+x+1x)=3x2+2x+11x2

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx1x41x1=limxkx3k3x2k24(1)41=limxk(xk)(x2+k2+kx)(xk)(x+k)4=limxkx2+k2+kxx+k4=k2+k2+k22k4=3k22k4=32kk=83.

New question posted

2 months ago

0 Follower 2 Views

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sinx2sin3x+sin 5xx=limx0sinxx2sin3xx+sin 5xx=limx0sinxxlim3x02 (sin3x3x)*3+lim5x0 (sin 5x5x)*5=16+5=0.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx021+cosxsin2x=limx021+cosxsin2x*2+1+cosx2+1+cosx=limx02(1+cosx)sin2x[2+1+cosx]=limx01cosxsin2x[2+1+cosx]=limx02sin2x/2(2sinx/2cosx/2)2*1[2+1+cosx]=limx02sin2x/24sin2x/2cos2x/2*1[2+1+cosx]=limx024cos2x/2*1[2+1+cosx]Taking,wehave=24cos20*1[2+2]=12*122=142

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxπ6cot2x3cosecx2=limxπ6cosec2x13cosecx2=limxπ6cosec2x4cosecx2=limxπ6(cosecx2)(cosecx+2)(cosecx2)=limxπ6(cosecx+2)Taking,wehave=cosecπ6+2=2+2=4

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimxasinxsinaxa=limxasinxsinaxa*x+ax+a=limxa(sinxsina)(x+a)xa=limxa(2cosx+a2.sinxa2)(x+a)xa[?sinAsinB=2cosA+B2.sinAB2]=limxa20(2cosx+a2.sinxa22*xa2)(x+a)=limxacos(x+a2)(x+a)[?limxa20sinxa2xa2=1]Taking,wehave=cos(a+a2)(a+a)=cosa*2a=2a.cosa

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Short Answer Type Questions as classified in NCERT Exemplar

Sol:

Giventhatlimx0sin 2x+ 3x2x+tan3x=limx0(sin 2x+ 3x2x*2x)(2x+tan3x3x*3x)=limx0(sin 2x2x+3x2x)*2x(2x3x+tan3x3x)*3x=(lim2x0sin 2x2x+32)[23+lim3x0tan3x3x]*23[?limx0sinxx=1]=(1+3223+1)*23[?limx0tanxx=1]=5/25/3*23=32*23=1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.