Maths NCERT Exemplar Solutions Class 12th Chapter Seven

Get insights from 115 questions on Maths NCERT Exemplar Solutions Class 12th Chapter Seven, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 12th Chapter Seven

Follow Ask Question
115

Questions

0

Discussions

4

Active Users

3

Followers

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

L e t I = π 4 π 4 l o g | s i n x + c o s x | d x ( i ) = π 4 π 4 l o g | s i n ( π 4 π 4 x ) + c o s ( π 4 π 4 x ) | d x [ Usingabf(x)dx=abf(a+bx)dx ] = π 4 π 4 l o g | s i n ( x ) + c o s x | d x = π 4 π 4 l o g | c o s x s i n x | d x ( i i ) A d d i n g ( i ) a n d ( i i ) 2 I = π 4 π 4 l o g | c o s x + s i n x | d x + π 4 π 4 l o g | c o s x s i n x | d x 2 I = π 4 π 4 l o g | ( c o s x + s i n x ) ( c o s x s i n x ) | d x 2 I = π 4 π 4 l o g | c o s 2 x s i n 2 x | d x 2 I = π 4 π 4 l o g c o s 2 x d x 2 I = 2 0 π 4 l o g c o s 2 x d x [ ? a a f ( x ) d x = 2 0 a f ( x ) d x i f f ( x ) = f ( x ) ] I = π 0 π 4 l o g c o s 2 x d x P u t 2 x = t d x = d t 2 W h e n x = 0 t = 0 ; w h e n x = π 4 t = π 2 I = 1 2 0 π 2 l o g c o s t d t &thi

O n a d d i n g ( i i i ) a n d ( i v ) , w e g e t 2 I = 1 2 0 π 2 ( l o g c o s t + l o g s i n t ) d t 2 I = 1 2 0 π 2 l o g s i n t c o s t d t 2 I = 1 2 0 π 2 l o g 2 s i n t c o s t d t 2 2 I = 1 2 0 π 2 ( l o g s i n 2 t l o g 2 ) d t 4 I = 0 π 2 l o g s i n 2 t d t 0 π 2 l o g 2 d t P u t 2 t = u 2 d t = d u d t = d u 2 4 I = 1 2 0 π l o g s i n u d u 0 π 2 l o g 2 d t [ Changingthelimit ] 4 I = 1 2 * 2 0 π 2 l o g s i n u d u l o g 2 [ t ] 0 π 2 4 I = 0 π 2 l o g s i n u d u l o g 2 . π 2 4 I = 2 I π 2 . l o g 2

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

LetI=0πxlogsinxdx(i)=0π(πx)logsin(πx)dx[0af(x)dx=0af(ax)dx]=0π(πx)logsinxdx(ii)Adding(i)and(ii)2I=0π[(πx)logsinx+xlogsinx]dx2I=0ππlogsinxdx2I=2π0π2logsinxdx[?0af(x)dx=20a/2f(x)dx]I=π0π2logsinxdx(iii)I=π0π2logsin(π2x)dxI=π0π2logcosxdx(iv)Onadding(iii)and(iv),weget2I=π0π2(logsinx+logcosx)dx2I=π0π2logsinxcosxdx2I=π0π2log2sinxcosx2dx2I=π0π2logsin2xdxπ0π2log2dxPut2x=t2dx=dtdx=dt22I=π0πlogsintdtπ.log20π21dx[Changingthe limit ]2I=Iπ.log2[x]0π2&

 

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

LetI=01xlogII|1+2x|Idx=[log|1+2x|.(x22)]0101(1.21+2x.x22)dx=12[x2log(1+2x)]0101(x21+2x)dx=12[log30]01(x2x/21+2x)dx=12log31201xdx+1201x1+2xdx=12log312[x22]01+12.1201(2x+11)1+2xdx=12log314[10]+14011dx140112x+1dx=12log314+14[x]0114.12[log|2x+1|]01=12log314+1418[log30]=12log318log3=38log3Hence,I=38log3.

New answer posted

3 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

Sol:

New answer posted

3 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long answer type Questions as classified in NCERT Exemplar

New question posted

3 months ago

0 Follower 1 View

New question posted

3 months ago

0 Follower

New question posted

3 months ago

0 Follower

New question posted

3 months ago

0 Follower 14 Views

New question posted

3 months ago

0 Follower

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.