Maths
Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
6 months agoContributor-Level 10
57. L.H.S. =
Using sin A + sin B = 2 sin cos
cos A + cos B = 2 cos cos

New answer posted
6 months agoContributor-Level 10
56. L.H.S = sin x + sin 3x + sin 5x + sin 7x.
= (sin x + sin 7x) + (sin 3x + sin 5x)
Using,
sin A + sin B = 2 sin cos
L.H.S. = 2. Sin cos + 2 sin cos
= 2 sin cos + 2 sin cos
= 2 sin 4x cos 3x + 2 sin 4x cosx.[ cos (-x) = cosx]
= 2 sin 4x[cos 3x + cosx]
Using cos A + cos B = 2 cos cos
So, L.H.S. = 2 sin 4x
= 2 sin 4x
= 4 sin 4x. cos 2x cosx = R.H.S.
New answer posted
6 months agoContributor-Level 10
55. L.H.S = (cos x-cos y)2 + (sin x- sin y)2
=
= 4 sin2 sin2 + 4 cos2 sin2
= 4 sin2
= 4 . [ sin2∅ + cos2∅= 1]
= R.H.S.
New answer posted
6 months agoContributor-Level 10
54. L.H.S. = (cos x + cos y)2 + (sin x- sin y)2
Using,
cos A + cos B = 2 cos cos
sin A - sin B = 2 cos sin
L.H.S. = .
= 4. cos2 cos2 . + 4 cos2 sin2 .
= 4 cos2
= 4 cos2 [ cos2θ+ sin2qθ = 1].
= R.H.S.
New answer posted
6 months agoContributor-Level 10
53. L.H.S = (sin 3x + sin x) + sin x + (cos 3x - cosx) cosx.
Using
Sin A + sin B = 2 sin cos
cos A - cos B = -2 sin sin .
L.H.S. = sin x + cosx
= 2 sin cos sin x -2 sin sin cosx.
= 2 sin 2xcosx sin x -2 sin 2x sin xcosx
= 0 = R.H.S.
New answer posted
6 months agoContributor-Level 10
52. L.H.S. = 2 cos cos + cos + cos =∂ .
= 2 cos cos + 2 cos cos
= 2 cos cos + 2. cos cos
= 2 cos cos + 2 cos cos [ cos (x) = cosx].
= 2 cos
= 2 cos
= 2 cos
= 2 cos * 2 *cos * cos .
= 2 cos 2* 0*cos
= 0
= R.H.S.
New answer posted
6 months agoContributor-Level 10
51. We have,
sinx + sin 3x + sin 5x = 0.
(sinx + sin 5x) + sin 3x = 0.
Using sin A + sin B = 2 sin cos .
2 sin cos + sin 3x = 0.
2 sin cos + sin 3x = 0.
2 sin 3xcos (-2x) + sin 3x = 0.
sin 3x [2 cos 2x + 1] = 0 [ cos (-x) = cosx].
sin 3x = 0 or 2 cos 2x + 1 = 0.
3x = nπ, n∈z. or cos 2x = = -cos = cos π -= cos
x= , n∈z or 2x = 2nπ± .
x = nπ± , n∈z.
New answer posted
6 months agoContributor-Level 10
50. We have,
sec2 2x = 1 tan 2x
1 + tan2 2x = 1 tan 2x [ sec2x = 1 + tan2x]
tan2 2x + tan 2x = 0.
tan 2x (tan 2x + 1) = 0.
tan 2x = 0 or tan 2x + 1 = 0.
2x = nπ, x∈z or tan 2x = -1 = -tan = tan π- = tan
x= , n∈z or 2x = nπ + , n∈z.
x = n∈z
New answer posted
6 months agoContributor-Level 10
49. We have,
sin 2x + cosx = 0.
2 sin cosx + cosx = 0 ( sin 2x = 2 sin xcosx)
cosx (2 sin x + 1) = 0.
cosx = 0 or 2 sinx + 1 = 0.
x = (2n + 1) , n∈z or sin x = = -sin = sin π + = sin
x = (2n + 1) , x∈z or x= nπ + (-1)n n∈z.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers


