Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 12 Views

P
Payal Gupta

Contributor-Level 10

57. L.H.S. = (sin7x+sin5x)+ (sin9x+sin3x) (cos7x+cos5x)+ (cos9x+cos3x).

Using sin A + sin B = 2 sin A+B2 cos AB2

cos A + cos B = 2 cos A+B2 cos AB2.

New answer posted

6 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

56. L.H.S = sin x + sin 3x + sin 5x + sin 7x.

= (sin x + sin 7x) + (sin 3x + sin 5x)

Using,

sin A + sin B = 2 sin A+B2 cos AB2.

L.H.S. = 2. Sin x+7x2 cos x7x2 + 2 sin 3x+5x2 cos 3x5x2

= 2 sin 8x2 cos (6x2) + 2 sin 8x2 cos (2x2)

= 2 sin 4x cos 3x + 2 sin 4x cosx.[ ? cos (-x) = cosx]

= 2 sin 4x[cos 3x + cosx]

Using cos A + cos B = 2 cos A + B2 cos AB2.

So, L.H.S. = 2 sin 4x [2·cos3x+x2cos3xx2].

= 2 sin 4x [2·cos4x2·cos2x2]

= 4 sin 4x. cos 2x cosx = R.H.S.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

55. L.H.S = (cos x-cos y)2 + (sin x- sin y)2

[2sinx+y2sinxy2]2+ [2cosx+y2sinxy2]2

= 4 sin2 (x+y2) sin2 (xy2) + 4 cos2 (x+y2) sin2 (xy2)

= 4 sin2 (xy2)  [sin2 (x+y2)+cos2 (x+y2)]

= 4 sin2 (xy2) . [ ? sin2∅ + cos2∅= 1]

= R.H.S.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

54. L.H.S. = (cos x + cos y)2 + (sin x- sin y)2

Using,

cos A + cos B = 2 cos A+B2 cos A−B2

sin A - sin B = 2 cos A+B2 sin AB2.

L.H.S. = [2cosx+y2cosxy2]2+[2cosx+y2sinxy2]2 .

= 4. cos2 (x+y2) cos2 (xy2) . + 4 cos2 (x+y2) sin2 (xy2) .

= 4 cos2(x+y2) [cos2(xy2)+sin2(xy2)]

= 4 cos2(x+y2) [ ? cos2θ+ sin2qθ  = 1].

= R.H.S.

New answer posted

6 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

53. L.H.S = (sin 3x + sin x) + sin x + (cos 3x - cosx) cosx.

Using

Sin A + sin B = 2 sin A+B2 cos A−B2

cos A - cos B = -2 sin A+B2 sin A−B2 .

L.H.S. =  (2sin3x+x2cos3xx2) sin x +  (2sin3x+x2sin3xx2) cosx

= 2 sin 4x2 cos 2x2 sin x -2 sin 4x2 sin 2x2 cosx.

= 2 sin 2xcosx sin x -2 sin 2x sin xcosx

= 0 = R.H.S.

New answer posted

6 months ago

0 Follower 49 Views

P
Payal Gupta

Contributor-Level 10

52. L.H.S. = 2 cos π13 cos 9π13 + cos 3π13 + cos 5π13 =∂ .

= 2 cos π13 cos 9π13 + 2 cos (3π13+5π13)2¯ cos (3π135π13)2

[?cosA+cosB=2cosA+B2cosAB2]

= 2 cos π13 cos 9π13 + 2. cos (8π/132) cos (2π/132)

= 2 cos π13 cos 9π13 + 2 cos 4π13 cos π13 [ ? cos (x) = cosx].

= 2 cos π13 [cos9π13+cos4π13].

= 2 cos π13[2cos(9π13+4π132)cos(9π134π132)]

= 2 cos π13 [2·cos(13π/132)cos(5π/132)]

= 2 cos π3 * 2 *cos π2 * cos 5π26 .

= 2 cos π2 2* 0*cos 5π26

= 0

= R.H.S.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

51. We have,

sinx + sin 3x + sin 5x = 0.

(sinx + sin 5x) + sin 3x = 0.

Using sin A + sin B = 2 sin A+B2 cos A−B2 .

2 sin  (x+5x2) cos  (x5x2) + sin 3x = 0.

2 sin 6x2 cos-4x2  + sin 3x = 0.

2 sin 3xcos (-2x) + sin 3x = 0.

sin 3x [2 cos 2x + 1] = 0 [ ? cos (-x) = cosx].

sin 3x = 0 or 2 cos 2x + 1 = 0.

3x = nπ, n∈z. or cos 2x = -12 = -cos π3 = cos  π -π3= cos 2π3

x= nπ3 , n∈z or 2x = 2nπ± 2π3 .

x = nπ±π3 , n∈z.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

50. We have,

sec2 2x = 1 tan 2x

1 + tan2 2x = 1 tan 2x [ sec2x = 1 + tan2x]

tan2 2x + tan 2x = 0.

tan 2x (tan 2x + 1) = 0.

tan 2x = 0         or         tan 2x + 1 = 0.

2x = nπ, x∈z or tan 2x = -1 = -tan π4 = tan π-π4  = tan 3π4.

x= nπ2 , n∈z or 2x = nπ + 3π4 , n∈z.

x = nπ2+3π8,  n∈z

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

53. Kindly go through the solution

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

49. We have,

sin 2x + cosx = 0.

2 sin cosx + cosx = 0 ( ?  sin 2x = 2 sin xcosx)

cosx (2 sin x + 1) = 0.

cosx = 0 or 2 sinx + 1 = 0.

x = (2n + 1) π2, n∈z or sin x = 12 = -sin π6 = sin  π + π6= sin 7π6.

x = (2n + 1) π2, x∈z or x= nπ + (-1)n 7π6,  n∈z.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.