Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

47. Given, xy + y2 = tan x + Differentiating w r t x we get,

ddx (xy+y2)=ddx (tanx+y)

xdydx+ydxdx+dy2dx=dx2x+dydx

xdydx+2ydydxdydx=sen2xy

(x+2y1)dydx=sec2xy

dydx=sin2xyx+2y1.

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

42. L.H.S. = cos 6x

= cos 3 (2x)

= 4 cos32x – 3 cos 2x                 [Q cos 3A = 4 cos3A – 3cos A]

= 4 [ (2 cos2x – 1)3] – 3 [ (2 cos2x – 1)]                      [Q cos 2x = 2 cos2x – 1]

= 4 [ (2 cos2x)3  + 3 [ (2 cos2x)2 (–1) + 3 (2 cos2x) (–1)2 + (–1)3] – 3 (2 cos2x) + 3

{Q (a + b)3= a3 + b3 + 3a2b + 3ab2}

= 4 [8 cos6x – 12 cos4x + 6cos2x – 1] – 6 cos2x + 3.

= 32 cos6x – 48 cos4x + 24 cos2x – 4 – 6cos2x + 3

= 32 cos6x – 48 cos4

...more

New answer posted

6 months ago

0 Follower 9 Views

A
alok kumar singh

Contributor-Level 10

46. Given, ax + by2 = cos y.

Differentiating w r t 'x' we get,

ddx (ax+by2)=dxdxcosy

= a + b 2y = - sin y dydx + sin y dydx = -a

= dydx=92by+siny.

= 2by dydx

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

45. Given, 2x + 3y = sin y.

Differentiating w r t x. we get,

ddx (2x+3y)=ddxsiny

2+3dydx=cosydydx

=cos y dydx3dydx=2

dydx (cosy3)=2

= dydx=2cosy3

New answer posted

6 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

44. Kindly go through the solution

New answer posted

6 months ago

0 Follower 60 Views

A
alok kumar singh

Contributor-Level 10

43. The given f x n is

f(x) = 0 < |x| < 3

At x = 1

L*H*L* = limh0f(1+h)f(0)h

=limh0[1+h][1]h

limhσ01h {?h<0,1+h<11 So, [1+h]=0}

=limh01h=

Hence lines does not exist

Qf is not differentiable at x = 1

At x = 2

L*H*L = limh0f(2+h)f(2)h {?h<02+h<230,[2+h]=1}

=limh0[2+h][2].h

=limh012h=limh01h

Hence, limit does not exist.

Qf is not differentiable at x = 2

New answer posted

6 months ago

0 Follower 11 Views

A
alok kumar singh

Contributor-Level 10

42. The given f x v is

f(x) = |x- 1|, x ε R

For a differentiable f x v f at x = c,

limh0f(c+h)f(c)h and limh0+f(c+h)f(c)h are finite & equal.

So, at x = 1. f(1) = |1 - 1| = 0.

Now,

L*H*L* = limh0f(1+hf(1)h

limh0|1+h1|0.h=limh0hh {h<0|h|=h}

=limhσ(1)

R*H*L = limh0+f(1+h)f(1)h = - 1.

=limh0+(1+h1)0h=limh0+hh=limh0+1 {?fnh>0|h|=h}

= 1

Hence, L*H*S ¹ R*H*L*

So, f is not differentiable at x = 2.

New answer posted

6 months ago

0 Follower 27 Views

P
Payal Gupta

Contributor-Level 10

41. L.H.S. = cos 4x.

= cos 2 (2x)

= 1 – 2 Sin2 (2x) [ cos 2x = 1 – 2 Sin2x]

= 1 – 2 [2 sin xcosx]2 [ sin 2x = 2 sin xcos x]

= 1 – 2 [4 sin2xcos2x]

= 1 – 8 sin2xcos2x

= R.H.S.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

40. L.H.S. = tan 4x

We know that,

tan2=2tan1tan2. , we can write

L.H.S=tan2(2x)=2tan2x1tan22x.

=2(2tanx1tan2x)1(2tanx1tan2x)2

=4tanx(1tan2x)(1tan2x)24tan2x(1tan2x)2

=4tanx*(1tan2x)1+tan4x2tan2x4tan2x

=4tanx(1tan2x)16tan2x+tan4x

= R.H.S.

New answer posted

6 months ago

0 Follower 16 Views

P
Payal Gupta

Contributor-Level 10

39. L.H.S. = cot x cot 2x – cot 2x cot 3x – cot 3x cot x.

= cot x cot 2x – cot 3x (cot 2x + cot x)

= cot x cot 2x – (cot 2x + cot x) [cot (2x + x)]

We know that,

cot (A+B)=cotAcotB1cotA+cotB we can write

L.H.S=cotxcot2x (cot2x+cotx) [cot2x·cotx1cot2x+cotx]

= cot x cot 2x – cot 2x cot x + 1

= R.H.S.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.