Maths
Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
2 months agoContributor-Level 10
2x=tan (π/9)+tan (7π/18)
=sin (π/9+7π/18) / cos (π/9)cos (7π/18)
=sin (π/2) / cos (π/9)cos (7π/18)
=1 / cos (π/9)cos (7π/18)
=1 / cos (π/9)sin (π/2−7π/18)
=1 / cos (π/9)sin (π/9)
⇒x=1 / 2cos (π/9)sin (π/9)
=1 / sin (2π/9)=cosec (2π/9)
Again 2y=tan (π/9)+tan (5π/18)
⇒2y=sin (π/9+5π/18) / cos (π/9)cos (5π/18)
=sin (7π/18) / sin (π/2−π/9)sin (π/2−5π/18)
=sin (7π/18) / sin (7π/18)sin (4π/18) = cosec (2π/9)
⇒|x−2y|=0
New answer posted
2 months agoContributor-Level 10
f (x)= {sinx, 0? x /2; 1? /2? x? 2+cosx, x>? }
f' (x)= {cosx, 0
New answer posted
2 months agoContributor-Level 10
. xdy - ydx - x² (xdy + ydx) + 3x? dx = 0
⇒ (xdy - ydx)/x² - (xdy + ydx) + 3x²dx = 0 ⇒ d (y/x) - d (xy) + d (x³) = 0
Integrate both side, we get
y/x - xy + x³ = c
Put x = 3, y = 3
⇒ 1 - 9 + 27 = c
c = 19
Put x = 4
y/4 - 4y = 19 - 64
⇒ y = 12
New answer posted
2 months agoContributor-Level 10
for reflexive (x, x)
x³ - 3x²x + 3x³ = 0
. reflexive
For symmetric
(x, y)? R
x³ - 3x²y - xy² + 3y³ = 0
? (x - 3y) (x² - y²) = 0
For (y, x)
(y - 3x) (y² - x²) = 0
? (3x - y) (x² - y²) = 0
Not symmetric
New answer posted
2 months agoContributor-Level 10
⇒3αβ−2αβ=−1
⇒2αβ=4⇒αβ=2 . (i)
b.c=10
⇒−3α−2β−α=10
⇒4α+2β=−10
⇒2α+β=−5 . (ii)
From (i) and (ii)
α=−1/2, α=−2
β=−4, β=−1
a=i−2j−k
b=3i−2j+2k
c=2i−2j+k
a. (b*c)=9
New answer posted
2 months agoContributor-Level 10
e? dy = e? /α dx
⇒−e? =e? /α+c
y (ln2)=ln2 and y (0)=−ln2
⇒−2=−1/α+c
⇒c=−2−1/α
⇒e? = 1/α e? −2−1/α
⇒−e? ² = 1/α e? ²−2−1/α
⇒2? ¹=3/α
⇒α=2
New answer posted
2 months agoContributor-Level 10
Equation of the ellipse
(x−3)²/a² + (y+4)²/b² = 1
a=2
ae=1⇒e=1/2
⇒b²=3
Equation of tangent
y+4=m (x−3)±√4m²+3
⇒mx−y=4+3m±√4m²+3
⇒3m±√4m²+3=0
⇒9m²=4m²+3
⇒5m²=3
New answer posted
2 months agoContributor-Level 10
A² = [1 2 3; 0 1 2; 0 1]
A³=A².A= [1 3 6; 0 1 3; 0 1]
A²? = [1 20 1+2+3.20; 0 1 20; 0 1] = [1 20 210; 0 1 20; 0 1]
M= [20 210 520; 0 20 210; 0 20]
M (a? )=T? =n (n+1)/2
S? = 1/2 [ n (n+1) (2n+1)/6 + n (n+1)/2 ]
⇒S? =1540
⇒M=2020
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers


