Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

17

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 13 Views

V
Vishal Baghel

Contributor-Level 10

(i) f: {1, 2, 3, 4} → {10} defined as:

f = { (1, 10), (2, 10), (3, 10), (4, 10)}

From the given definition of f, we can see that f is a many one function as: f (1) = f (2) = f (3) = f (4) = 10

∴f is not one-one.

Hence, function f does not have an inverse.

(ii) g: {5, 6, 7, 8} → {1, 2, 3, 4} defined as:

g = { (5, 4), (6, 3), (7, 4), (8, 2)}

From the given definition of g, it is seen that g is a many one function as: g (5) = g (7) = 4.

∴g is not one-one,  

Hence, function g does not have an inverse.

(iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} defined as:

h = { (2, 7), (3, 9), (4, 11), (5, 13)}

It is seen that

...more

New answer posted

6 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

It is given that f (x)=4x+36x4, x23

(fof) (x)=f (f (x))=f (4x+36x4)=4 (4x+36x4)+36 (4x+36x4)4=16x+12+18x1224x+1824x+16=34x34=x

Therefore fof (x)=x for all x23

fof=1

Hence, the given function f is invertible and the inverse of f is itself.

New question posted

6 months ago

0 Follower 4 Views

New answer posted

6 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

To prove:

(f+g)oh=foh+gohconsider:((f+g)oh)(x)=(f+g)(h(x))=f(h(x))+g(h(x))=(foh)(x)+(goh)(x)={(foh)+(goh)}(x)((f+g)oh)(x)={(foh)+(goh)}(x),xRHence,(f+g)oh=foh+goh

To prove

(f.g)oh=(foh).(goh)Consider((f.g)oh)(x)=(f.g)(h(x))=f(h(x)).g(h(x))=(foh)(x).(goh)(x)={(foh).(goh)}(x)((f.g)oh)(x)={(foh).(goh)}(x),xRHence,(f.g)oh=(foh).(goh)

New answer posted

6 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

52. The given equation lines are.

line 1: xcosθ-y sin θcos 2θ

⇒ xcosθ-y sin θ - kcos 2θ = 0

The perpendicular distance from origin (0,0) to line 1 is

New answer posted

6 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

The functions f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} are defined as

f = { (1, 2), (3, 5), (4, 1)} and g = { (1, 3), (2, 3), (5, 1)}.

gof (1) = g (f (1) = g (2) = 3 [f (1) = 2 and g (2) = 3]

gof (3) = g (f (3) = g (5) = 1 [f (3) = 5 and g (5) = 1]

gof (4) = g (f (4) = g (1) = 3 [f (4) = 1 and g (1) = 3]

 gof = { (1, 3), (3, 1), (4, 3)}

New answer posted

6 months ago

0 Follower 13 Views

A
alok kumar singh

Contributor-Level 10

51. 

Let 0 (o, o) be the origin and P (-1, 2) be the given point on the line y = mx + c.

Then, slope of OP, = =2010

Slope of OP = -2

As the line y = mx + c is ⊥ to OP we can write

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given,  f:RR defined as f (x)=3x

For x1, x2R such that f (x1)=f (x2)

3x1=3x2

x1=x2

So,  f is one-one

And for yR , there exist y3R such that

f (y3)=3*y3=y

f is onto

Hence, option (A) is correct.

New answer posted

6 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

Given,  f:RR defined by f (x)=x4

For x1, x2R such that f (x1)=f (x2)

x14=x24

x1=±x2

x1=x2 or x1=x2

So,  f is not one-one

The range of f (x) is a set of all positive real numbers which is not equal to co-domain R

So,  f in not onto

 Option (D) is correct

New answer posted

6 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

Given, f:AB defined by f(x)=(x2x3)

Let x1,x2A=R{3} such that

f(x1)=f(x2)

x12x13=x22x23

(x12)(x23)=(x22)(x13)

x1x23x12x2+6=x2x13x22x1+6

2x13x1=2x23x2

x1=x2

x1=x

So, f is one-one

For yB=R{1} there exist f(x)=y such that

x2x3=y

x2=xy3y

xxy=23y

x(1y)=23y

x=23y1y where y1.A

Thus, f(23y1y)=(23y1y)2(23y1y)3=23y2+2y23y3+3y

y1=y

f is onto

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.