Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 1 View

R
Raj Pandey

Contributor-Level 9

Kindly consider the following Image 

 

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

f (x) = (4a - 3) (x + ln5) + 2 (a - 7)cot (x/2)sin² (x/2)
= (4a - 3) (x + ln5) + (a - 7)sin (x)
f' (x) = (4a - 3) + (a - 7)cos (x)
For critical points f' (x) = 0
cos (x) = - (4a - 3) / (a - 7) = (3 - 4a) / (a - 7)
⇒ -1 ≤ (3 - 4a) / (a - 7) ≤ 1
Solving this inequality leads to:
⇒ a ∈ [4/3, 2]

New answer posted

2 months ago

0 Follower 8 Views

R
Raj Pandey

Contributor-Level 9

(|x| - 3)|x + 4| = 6

Case (i) x < -4
(-x - 3) (- (x + 4) = 6
(x + 3) (x + 4) = 6 ⇒ x² + 7x + 12 = 6 ⇒ x² + 7x + 6 = 0
(x + 1) (x + 6) = 0 ⇒ x = -6 (since x < -4)

Case (ii) -4 ≤ x < 0
(-x - 3) (x + 4) = 6
⇒ -x² - 7x - 12 = 6
⇒ x² + 7x + 18 = 0
The discriminant is D = 7² - 4 (1) (18) = 49 - 72 < 0, so no real solution.

Case (iii) x ≥ 0
(x - 3) (x + 4) = 6
⇒ x² + x - 12 = 6
⇒ x² + x - 18 = 0
x = [-1 ± √ (1² - 4 (1) (-18)] / 2 = [-1 ± √73] / 2
Since x ≥ 0 ⇒ x = (√73 - 1) / 2
Only two solutions.

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

Variance of a, b, c & a+2, b+2, c+2, are same.
Given: b = a + c (i)
d² = (1/3) (a² + b² + c²) - [ (a+b+c)/3]²
as a + c = b
d² = (1/3) (a² + b² + c²) - (2b/3)²
9d² = 3 (a² + b² + c²) - 4b²
⇒ b² = 3 (a² + c²) - 9d²

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

log? /? [ (|z|+11)/ (|z|-1)²] < 2
(|z|+11)/ (|z|-1)² > (1/2)²
(|z|+11)/ (|z|-1)² > 1/4
⇒ 4|z| + 44 > |z|² - 2|z| + 1
⇒ |z|² - 6|z| - 43 < 0

⇒ |z| - 7 ≤ 0
∴ |z|max = 7

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

P (x) = x² + bx + c.
Given ∫? ¹ P (x) dx = 1.
∫? ¹ (x² + bx + c) dx = [x³/3 + bx²/2 + cx] from 0 to 1 = 1/3 + b/2 + c = 1.
2 + 3b + 6c = 6 => 3b + 6c = 4 - (i)
When P (x) is divided by (x-2), the remainder is 5. So, P (2) = 5.
(2)² + b (2) + c = 5 => 4 + 2b + c = 5 => 2b + c = 1 - (ii)
From (ii), c = 1 - 2b. Substitute into (i):
3b + 6 (1 - 2b) = 4
3b + 6 - 12b = 4
-9b = -2 => b = 2/9.
c = 1 - 2 (2/9) = 1 - 4/9 = 5/9.
We need to find 9 (b+c).
9 (2/9 + 5/9) = 9 (7/9) = 7.

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

dy/dx + (tanx)y = sinx. This is a linear differential equation.
Integrating Factor (I.F.) = e^ (∫tanx dx) = e^ (ln|secx|) = secx.
The solution is y * I.F. = ∫ (sinx * I.F.) dx + C.
y * secx = ∫ (sinx * secx) dx = ∫tanx dx = ln|secx| + C.
Given y (0) = 0.
0 * sec (0) = ln|sec (0)| + C => 0 = ln (1) + C => C = 0.
So, y * secx = ln (secx).
y = cosx * ln (secx).
At x = π/4:
y = cos (π/4) * ln (sec (π/4) = (1/√2) * ln (√2) = (1/√2) * (1/2)ln (2) = ln (2) / (2√2).

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.