Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

The tangent to the parabola y² = 4ax is y = mx + a/m.

For y² = 4x, a=1. So, the tangent is y = mx + 1/m.
The given line is y = mx + 4.
Comparing the two, 1/m = 4 ⇒ m = 1/4.
The line is y = (1/4)x + 4.
This line is also tangent to x² = 2by.
Substitute y into the parabola equation:
x² = 2b (1/4)x + 4)
x² = ( b/2 )x + 8b
x² - ( b/2 )x - 8b = 0.
For tangency, the discriminant (D) is zero.
D = (-b/2)² - 4 (1) (-8b) = 0.
b²/4 + 32b = 0.
b ( b/4 + 32) = 0.
b = 0 (not possible) or b/4 = -32 ⇒ b = -128.

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

(3¹/? + 5¹/? )?
General term =? C? (3¹/? )? (5¹/? )? =? C? 3^ (60-r)/4) 5^ (r/8)
Terms are rational for r being a multiple of 8 and (60-r) being a multiple of 4.
If r is a multiple of 8, then 60-r is 60 - 8k. Since 60 is a multiple of 4, 60-8k is also a multiple of 4.
So, we just need r to be a multiple of 8.
r = 0, 8, 16, 24, 32, 40, 48, 56. (Total 8 rational terms)
Total terms are 61.
Number of irrational terms = 61 - 8 = 53 = n.
∴ n - 1 = 52.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

g (f (x) = f² (x) + f (x) - 1.
g (f (5/4) = f² (5/4) + f (5/4) - 1.
Given g (f (5/4) = 5/4, let f (5/4) = y.
-5/4 = y² + y - 1 (There appears to be a typo in the image's solution)
y² + y - 1 + 5/4 = 0
y² + y + 1/4 = 0
(y + 1/2)² = 0
y = -1/2.
So, f (5/4) = -1/2.

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

A = 1/3 [ 1; 1 ω ω² 1 ω² ω ]
A² = A * A = 1/9 [ . ]
(The calculation in the image shows A² is the identity matrix, let's verify)
A² leads to I (Identity matrix).
So A² = I.
A³ = A² * A = I * A = A.
A? = (A²)² = I² = I.
A³? = (A²)¹? = I¹? = I.

New answer posted

2 months ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

Let z = αi + βj be a complex number & √3i + j = (√3 + i) where I = √-1.
|z| = |z - (√3 + i)| and |z| = |√3 + i| = 2.
This implies z lies on the perpendicular bisector of the segment from 0 to √3+i and on a circle of radius 2 centered at the origin.
z = (√3 + i) ( (1+i)/√2 )
z = (1/√2) [ (√3 - 1) + I (√3 + 1)]
∴ α = (√3 - 1)/√2, β = (√3 + 1)/√2
Area of required triangle = (1/2) * base * height = (1/2) * |α| * |β| * 2 (This seems to be area of triangle with vertices 0, z, and another point)
The provided calculation: Area = (1/2) * | (√3-1)/√2| * | (√3+1)/√2| = (1/2) * (3-1)/2 = 1/2.

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

y = √ (2cos²α / (sinα cosα) + 1/sin²α)
y = √ (2cotα + cosec²α)
y = √ (2cotα + 1 + cot²α) = √ (1 + cotα)²) = |1 + cotα|.
Given α is in a range where 1+cotα is negative, y = -1 - cotα.
dy/dα = - (-cosec²α) = cosec²α.
At α = 5π/6, dy/dα = cosec² (5π/6) = (1/sin (5π/6)² = (1/ (1/2)² = 2² = 4.

New answer posted

2 months ago

0 Follower 8 Views

A
alok kumar singh

Contributor-Level 10

Given Re (z-1)/ (2z+i) = 1, where z = x + iy.
(z-1)/ (2z+i) = [ (x-1) + iy] / [2x + I (2y+1)]
To rationalize, multiply the numerator and denominator by the conjugate of the denominator [2x - I (2y+1)].
Numerator = [ (x-1) + iy] * [2x - I (2y+1)] = 2x (x-1) - I (x-1) (2y+1) + i2xy + y (2y+1)
Real part of the numerator = 2x (x-1) + y (2y+1).
Denominator = (2x)² + (2y+1)².
Re (z-1)/ (2z+i) = [2x (x-1) + y (2y+1)] / [ (2x)² + (2y+1)²] = 1.
2x² - 2x + 2y² + y = 4x² + 4y² + 4y + 1.
0 = 2x² + 2y² + 2x + 3y + 1.
So, 2x² + 2y² + 2x + 3y + 1 = 0.

New answer posted

2 months ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

dy/dx + 2y tan (x) = sin (x)
I.F. = e^ (∫2tan (x)dx) = e^ (2ln (sec (x) = sec² (x)
Solution is y sec² (x) = ∫sin (x)sec² (x)dx = ∫sec (x)tan (x)dx
⇒ y sec² (x) = sec (x) + c
y (π/3) = 0 ⇒ 0 * sec² (π/3) = sec (π/3) + c ⇒ 0 = 2 + c ⇒ c = -2.
∴ y = (sec (x) - 2) / sec² (x)
Now let g (t) = (t - 2)/t² = 1/t - 2/t² for |t| ≥ 1.
g' (t) = -1/t² + 4/t³
g' (t) = 0 ⇒ t = 4.
g' (t) = 2/t³ - 12/t? g' (4) < 0, hence maximum.
∴ g (t)max = g (4) = (4 - 2)/4² = 2/16 = 1/8.

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

The equation of the line is (x-2)/1 = (y-1)/1 = (z-6)/-2.
Let this be equal to k. So, a point on the line is (k+2, k+1, -2k+6).
This point lies on the plane x + y - 2z = 3.
(k+2) + (k+1) - 2 (-2k+6) = 3
2k + 3 + 4k - 12 = 3
6k - 9 = 3
6k = 12 ⇒ k = 2.
The point of intersection is (2+2, 2+1, -2 (2)+6) = (4, 3, 2).

New answer posted

2 months ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

PR (line): r = (3i - j + 2k) + λ (4i - j + 2k) - (I)
QS (line): r = (i + 2j - 4k) + μ (-2i + j - 2k) - (II)
If they intersect at T then:
3 + 4λ = 1 - 2μ
-1 - λ = 2 + μ
2 + 2λ = -4 - 2μ
Solving the first two equations gives λ = 2 & μ = -5. These values satisfy the third equation.
∴ T (11, -3, 6)
Also, OT is coplanar with lines PR and QS.
⇒ TA ⊥ OT
|OT| = √166
|TA| = √5
|OA| = √ (|OT|² + |TA|²) = √171

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.