Ncert Solutions Maths class 11th
Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
a month agoContributor-Level 9
Equation of normal to the ellipse x²/a² + y²/b² = 1 at (x? , y? ) is a²x/x? - b²y/y? = a² - b².
At the point (ae, b²/a):
a²x/ (ae) - b²y/ (b²/a) = a² - b²
It passes through (0, -b).
a² (0)/ (ae) - b² (-b)/ (b²/a) = a² - b²
ab = a² - b²
Since b² = a² (1-e²), a²-b² = a²e².
ab = a²e²
a²b² = a? e?
a² (a² (1-e²) = a? e?
1 - e² = e?
e? + e² - 1 = 0
New answer posted
a month agoContributor-Level 9
Let the first A.P. be a? , a? + d, a? + 2d.
a? = a? + 39d = -159
a? = a? + 99d = -399
Subtracting the equations, 60d = -240 ⇒ d = -4.
Substituting d back, a? + 39 (-4) = -159 ⇒ a? - 156 = -159 ⇒ a? = -3.
Now, for the second A.P. with first term b? and common difference D = d+2 = -2.
b? = a?
⇒ b? + 99D = a? + 69d
⇒ b? + 99 (-2) = -3 + 69 (-4)
⇒ b? - 198 = -3 - 276
⇒ b? = -279 + 198 = -81
New answer posted
a month agoContributor-Level 9
Equation of line is x/3 + y/1 = 1
⇒ x + 3y - 3 = 0
The image (x? , y? ) of point (-1, -4) is given by:
(x? - (-1)/1 = (y? - (-4)/3 = -2 (1 (-1) + 3 (-4) - 3) / (1² + 3²)
(x? + 1)/1 = (y? + 4)/3 = -2 (-1 - 12 - 3)/10 = -2 (-16)/10 = 16/5
x? + 1 = 16/5 ⇒ x? = 11/5
(y? + 4)/3 = 16/5 ⇒ y? + 4 = 48/5 ⇒ y? = 28/5
New answer posted
a month agoContributor-Level 9
Applying Rolle's theorem in for function f (x), there exists c such that f' (c) = 0, c ∈ (0,1).
Again applying Rolle's theorem in [0, c] for function f' (x), there exists c? such that f' (c? ) = 0, c? ∈ (0, c).
Option A is correct.
New answer posted
a month agoContributor-Level 9
Given equation is 2x (2x + 1) = 1 ⇒ 4x² + 2x - 1 = 0. Roots of the equation are α and β.
∴ α + β = -2/4 = -1/2 ⇒ β = -1/2 - α
and
4α² + 2α - 1 = 0 ⇒ α² = (1-2α)/4 = 1/4 - α/2
Now
α = 1/2 - 2α²
Substituting into the expression for β:
β = -1/2 - (1/2 - 2α²) = -1 + 2α²
New answer posted
a month agoContributor-Level 10
Let P (2cosθ, 2sinθ)
∴ Q (-2cosθ, -2sinθ)
Given line x+y-2=0
∴ α = |2cosθ + 2sinθ – 2| / √2
β = |-2cosθ - 2sinθ – 2| / √2
∴ αβ = √2 (cosθ + sinθ – 1) · √2 (cosθ + sinθ + 1)
= 2|cos²θ + sin²θ + 2sinθcosθ – 1| = 2|sin2θ|
Max |sin2θ| = 1
∴ maximum αβ = 2.
New answer posted
a month agoContributor-Level 10
Ways of selecting correct questions =? C? = 15
Ways of doing them correct = 1
Ways of doing remaining 2 questions incorrect = 3² = 9
∴ No. Of ways = 15 * 1 * 9 = 135
New answer posted
a month agoContributor-Level 10
Given,
300 = 1 + (N – 1)d
⇒ (N − 1)d = 299
∴ (N, d) = (24,13) is the only possible pair
∴ a? = 1 + 19 (13) = 248 and, S? = (1+248)/2 * 20
= 2490
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers