Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

5 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

tan1 (tan7π6)=tan1 (tan6π+π6)

=tan1 (tan6π6+π6)

=tan1 (tanπ+π6)

=tan1 (tanπ6) { Ø tan (π+ Ø ) = tan Ø as tan b (+) we in 3rd quadrant)}

=π6 (π2, π2)

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Cos-1 (cos13π6.) = cos1  (cos12π+π6)

cos1  (cos12π6+π6)

cos1  [cos1 (2π+π6)]  {Øcor2π+=ØcosØ}

=cos1 (cosπ6)

=π6 ∈ [0, x]

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

= sin  [π3+sin1 (sinπ6)]

= sin  [π3+π6] = sin  [2π+π6] = sin  (3π6)

= sin π2=1 

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Cos-1 cos 7π6

(M) As 7π6  [0, π] ;principal value branch of cos-1

cos-1 (cos7π6) = cos-1 (cos2x7π6)  {? cos (2πθ)=cosθ}

= cos-1 (sis12π7π6)

=cos1cos5π65π6 [0, π]

5π6

So, option B is correct

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan(sin135+cot132)

(M) Let sin135=x and cot-1 32, = y .

Then sinx=35coty=32

Hence, tan x = sinxcosx = 3545 = 34

tan(sin135+cot132)=tan(x+y)

=tanx+tany1tanxtany .

3*3+2*44*34*33*24*3

4*33*24*3

9+8126=176

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan1(tan3π4).

(M). As 3π4(π2,π2); principal value branch of tan -1we can write,

tan1(tan3π4)=tan1tan4ππ4 =tan1(tan4π4π4)

=tan1(tanππ4)

=tan1(tanπ4){?tanis()weinI1 quadent }

=tan1(tan14){?tan1(x)=tan1x}

π4

New answer posted

5 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

sin1 (sin2π3).

(M) As 2π3 [π2, π2] principal value branch of sin-1 we can write,

sin1 (sin3ππ3)=sin1 (sin3π3π3)=sin1 (sinππ3)

=sin1 (sinπ3) {? sinis (+)ve in ind quadrat
}

=π3.

New answer posted

5 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

tan1x1x2+tan1x+1x+2=π4

(E)Using tan1x+tan1y=tan1x+y1xy.

tan1(x1)(x2)+(x+1x+2)1(x1)(x2)*(x+1x+2)=π4.

(x1)(x+2)1(x+1)(x2)(x2)(x+2)(x2)(x+2)(x1)(x+1)(x2)(x+2)=tanπ4

(x1)(x+2)+(x+1)(x2)(x2)(x+2)(x1)(x+1)=1.

x2+2xx2+x22x+x2(x24)(x212)=1. {?(ab)(a+b)=a2b2}

2x24x24x2+1=12x243=12x24=3

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

sin(sin115+cos1x)=1.

(E) sin(sin115+cos1x)=sinπ2{?sinπ2=1}

sin115+cos1x=sin1(sinπ2)=π2

cos1x=π2sin115

cos1x=cos115 {?π2=sin1x+cos1x}

=π2sin115=cos115 {π2sin1x=cos1xx=15π2sin115=cos115.

= x = 15.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

 tan12[sin12x1+x2+cos11y21+y2],|x|<1,y>

(M) Let x = tanØ . then tan-1x= 0 and y = tan ω then tan-1y = ω. we have,

tan 12 {sin−12tanθ1+tan2θ+1tan2ω1+tan2ω}

=tan12{sin1(sin2θ)+cos1(cos2ω)} {sin2θ2tanθ1+tan2θcos2θ=1tan2θ1+tan2θtanx+y=tanx+tany1tanxtany}

=tan12{2θ+2ω}=tan(θ+ω)

=tanθ+tanω1tanθtanω

x=y1xy

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.