Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cot (tan1a+cot1a)=cotπ 2 {? tan1x+cot1x=π2}

(E) =0

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan1 [2cos (2sin112)]=tan1 [2cos (2sin1sinπ6)]

(E) =tan1 [2cos (2*π6)]

=tan1 [2cosπ3]

=tan12*12

=tan11

=tan1 (tanπ4)

=π4

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given tan -1 cosxsinxcosx+sinx , π4, x< 3x4

(M) Dividing numerator & denominator cos x we get,

tan -1 cosxsinxcosxcosx+sinxcosx=tan1cosxcosxsinxcosxcosxcosx+sinxcosx=tan11tanx1+tanx.

We know that tanπ4=1 = 1 so,

=tan1tanπ4tanx1+tanπ4tanx=tan1[tan(π4x)] {?tan(xy)=tanxtany1+tanx·tany}

=π4x .

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

L.H.S= 2 tan -1 12 + tan -1 17

(E) Using2 tan -1x= tan -1 2a1x2 we can write.

L.H.S = tan -1 2*121(12)2 + tan -1 17

= tan -1 1114 + tan -117

= tan -1 1414 + tan -117 = tan -1 43 + tan -1 17

= tan -143+17143*17 { Ø tan -1 x + tan -1 y = tan - 1 x+y1xy }

= tan -1 7*4+1*33*73*74*13*7

= tan -1 28+3214 = tan -1 3117 = R H S

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

L.H.S = tan -1211 + tan -1 724

Using tan -1x+ tan -1y= tan -1 x+y1xy , xy<1

L.H.S =tan -1 211+7241211*724 = tan -1 2*24+7*211*2411*247*211*24

tan -1 48+1426414 = tan -1 125250 = tan -1 12 = R.H.S

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that,

cos3θ= 4cos3θ - 3cosθ

Letx = cosθ Then θ = cos-1x. We have,

Cos3 (cos-1x) = 4x3-3x

3cos-1x = cos-1 (4x3- 3x)

Hence Proved

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

We know that.

sin 3θ =3 sin θ 4sin3θ (identity).

(E) Let x = sinθ. Then, sin −1x=θ . We have,

Sin3 (sin −1x) = 3x−4x3

3sin −1x =sin-1 (3x−4x3)

Hence proved.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

=tan−1 (tanπ3) − π + sec−1 (secπ3)

π3π+π3

π3π+π3

π3.

Option B is correct.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, Sin−1x=y.

(E) We know that the principal value branch of Sin−1 is

[π2, π2] Hence,  π2 ≤ y ≤ π2

Option B is correct.

New answer posted

5 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

cos−112 + 2Sin−1 12 = cos−1 (cosπ3) + 2*Sin−1 (sinπ6)

π3+2*π6

π3+π3

2π3

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.