Vector Algebra

Get insights from 133 questions on Vector Algebra, answered by students, alumni, and experts. You may also ask and answer any question you like about Vector Algebra

Follow Ask Question
133

Questions

0

Discussions

10

Active Users

2

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(xa). (xa)=12x.x+x.aa.xa.a=12|x|2|a|2=12|x|21=12 [|a|=1asaaisunitvector]|x|2=12+1=13|x|=√13

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Let θ be the angle between the vectors |a| and |b| .

It is given that |a|=|b|,a.b=12andθ=60?(1)

We know, a.b=|a||b|cosθ

12=|a||a|cos60?(using(1))12=|a|2*12|a|2=1|a|=|b|=1

 Magnitude of two vector=1

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

(3a5b). (2a+7b).

=3a.2a+3a.7b5b.2a5b.7b=6a.a+21a.b10a.b35b.b=6|a|2+21a.b10a.b35|b|2=6|a|2+11a.b35|b|2

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

|a| and |b| ,if (a+b).(ab)=8 and |a|=8|b|

(a+b).(ab)=8and|a|=8|b|(a+b).(ab)=8a.aa.b+b.ab.b=8|a|2|b|2=8(8|b|)2|b|2=864|b|2|b|2=863|b|2=8|b|=√8/√63(magnitudeofavectorisnonnegative)|b|=2√23√7And|a|=8|b|=2*2√23√7=16√23√7

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Here, each of the given three vector is a unit vector.

a.b=27*37+37*(67)+67*27=649+(1849)+1249=618+1249=0b.c=37*67+(67)*27+27*(37)=18491249+(649)=1812649=0c.a=67*27+27*37+(37)*67=1249+6491849=0

Therefore, the given three vectors are mutually perpendicular to each other.

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Let,

a=i^+3j^+7k^b=7i^j^+8k^

The project of vector a on b is.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let,

a=i^j^b=i^+j^

The projection of vector a on b is given by,

 The projection of vector a on b is 0.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Now,

a.b= (i^2j^+3k^) (3i^2j^+k^)=1.3+ (2). (2)+3.1=3+4+3=10

Also, we know,

New answer posted

4 months ago

0 Follower 9 Views

V
Vishal Baghel

Contributor-Level 10

Given,

=√3

, |b
=2anda.b=√6

We have,

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We know,

If a and b are two collinear vector, they are parallel.

So,

b=λaIf,λ=±1,then,a=±bIf,a=a1i^+a2j^+a3k^b=b1i^+b2j^+b3k^,thenb=λab1i^+b2j^+b3k^=λ(a1i^+a2j^+a3k^)=(λa1)i^+(λa2)j^+(λa3)k^b1=λa1,b2=λa2,b3=λa3b1a1=b2a2=b3a3=λ

Hence, the respective component are proportional but, vector a and b can have different direction.

Thus, the statement given in D is incorrect.

The correct answer is D.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.