Vector Algebra

Get insights from 133 questions on Vector Algebra, answered by students, alumni, and experts. You may also ask and answer any question you like about Vector Algebra

Follow Ask Question
133

Questions

0

Discussions

10

Active Users

2

Followers

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let, θ be angle between two vector a&b .

Then, without loss of generality, a&b are non-zero vectors, so that a&b

are positive.

|a.b|=|a*b||a||b|cosθ=|a||b|sinθcosθ=sinθ[|a|&|b|arepositive]tanθ=1=π4θ=π4.

 Therefore, the correct answer is B.

 

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

i^ (j^*k^)+j^ (i^*k^)+k^ (i^*j^)

=i^.i^+j^ (j^)+k^.k^=1j^.j^+1=11+1=1

Therefore, the correct answer is (C)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let, a&b be two unit vectors and θ be the angle between them.

Then, |a|=|b|=1

Now, a+b is a unit vector if |a+b|=1

|a+b|=1(a+b)2=1(a+b).(a+b)=1a.a+a.b+b.a+b.b=1|a|2+2a.b+|b|2=112+2|a|.|b|cosθ+12=1

1+2.1.1cosθ+1=1 [  a&b is unit vector.]

2cosθ=12cosθ=12=2π3θ=2π3

Therefore, the correct answer is (D)

New answer posted

4 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

Let, θ in triangle between two vector a&b

Then, without loss of generality, a&b are non-zero vector so that |a|&|b|

are positive.

We know, a.b=|a||b|cosθ

So, a.b0

|a||b|cosθ0cosθ0[|a|&|b|arepositive]0θπ2

Therefore, a.b0 , when 0θπ2

Hence, the correct answer is B.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(a+b).(a+b)=|a|2+|b|2

a.a+a.b+a.b+b.b=|a|2+|b|2

( Distributive of scalar product over addition )

|a|2+2a.b+|b|2=|a|2+|b|2

( Scalar product is commutative , a.b=b.a )

2a.b=|a|2|a|2+|b|2|b|22a.b=0a.b=0

 Therefore, a&b are perpendicular.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given that a,b&c are mutually perpendicular vectors, we have

a.b=b.c=c.a=0|a|=|b|=|c|

Let, vector a+b+c be inclined to a,b&c at angles, θ1,θ2&θ3 respectively.

cosθ1=(a+b+c).a|a+b+c||a|=a.a+b.a+c.a|a+b+c||a|=|a|2|a+b+c||a|[b.a=c.a=0]=|a||a+b+c|

cosθ2=(a+b+c).b|a+b+c||b|=a.b+b.b+b.c|a+b+c||b|[a.b=b.c=0]=|b|2|a+b+c||b|=|b||a+b+c|cosθ3=(a+b+c).c|a+b+c||c|=a.c+b.c+c.c|a+b+c||c|[a.c=b.c=0]=|c|2|a+b+c||c|=|c||a+b+c|now,as,|a|=|b|=|c|,cosθ1=cosθ2=cosθ3θ1=θ2=θ3

Therefore, the vector (a+b+c) are equally inclined to a,b&c.

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

(2i^+4j^5k^)+ (λi^+2j^+3k^)= (2+λ)i^+6j^2k^

The unit vector along  (2i^+4j^5k^)+ (λi^+2j^+3k^) is given as;

By Q.uestion, scalar product of  (i^+j^+k^) with this unit vector is 1.

New answer posted

4 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

Given,

a=i^+4j^+2k^b=3i^2j^+7k^c=2i^j^+4k^

Let, d=d1i^+d2j^+d3k^

Since, d is perpendicular to both a&b

d.a=0d1+d24+d32=0(1)d.b=0d13+d2(2)+d3(7)=0d132d2+7d3=0(2)

We know,

c.d=152d1d2+4d3=15(3)From,(1)d1+4d2+2d3=0d1=4d22d3

Putting this value in (3) we get

2(4d22d3)d2+4d3=158d24d3d2+4d3=159d2=15d2=159=53

Putting d1&d2 value in (2), we get

3d12d2+7d3=03(4d22d3)2(53)+7d3=012*(53)6d3+103+7d3=020+d3+103=0d3=20103=60103=703Now,d1=4*532*703=203+1403=1603d1=1603,d2=53,d3=703d=1603i^53j^703k^=13(160i^5j^70k^)

 The reQ.uired vector is 13(160i^5j^70k^)

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

 

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given,

Adjacent sides of parallelogram are

a=2i^4j^+5k^b=i^2j^3k^

 Diagonal of parallelogram = a+b

a+b= (2+1)i^+ (4+ (2))j^+ (5+ (3))k^=3i^6j^+2k^

Thus, the unit vector parallel to diagonal

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.