Vector Algebra

Get insights from 133 questions on Vector Algebra, answered by students, alumni, and experts. You may also ask and answer any question you like about Vector Algebra

Follow Ask Question
133

Questions

0

Discussions

10

Active Users

2

Followers

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Vector λa is a unit vector if |λa|=1

Now,

|λa|=1|λ||a|=1|a|=1|λ| [λ0]a=1|λ| [|a|=a]

 Therefore, vectar λa is a unit vector if a= 1|λ| .

Option (D)is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let vector 2i^j^+k^, i^3j^5k^ and 3i^4j^4k^ be position vector of point A, B, C respectively.

So,

OA=2i^j^+k^OB=i^3j^5k^OC=3i^4j^4k^

Now, vectors AB, BC and AC represents the sides of ? ABC .

Hence,

New answer posted

4 months ago

0 Follower 32 Views

V
Vishal Baghel

Contributor-Level 10

Given, point are

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Vertices of ? ABC are given as

A (1, 2, 3), B (1, 0, 0), C (0, 1, 2)

? ABC is the angle between the vectors BA and BC

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Consider

a=2i^+4j^+3k^b=3i^+3j^6k^ and

Then,

a.b=2.3+4.3+3. (6)=6+1218=0

Therefore, the converse of the given statement need not be true.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

|a+b+c|=(a+b+c).(a+b+c)

=a.a+a.b+a.c+b.a+b.b+b.c+c.a+c.b+c.c=|a|2+|b|2+|c|2+2(a.b+b.c+c.a)=1+1+1+2(a.b+b.c+c.a)=3+2(a.b+b.c+c.a)a.b+b.c+c.a=32

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We know,

a.a=0 and a.b=0

Now,

a.a=0|a|2|a|=0

 a is a zero vector.

Thus, vector b satisfying a.b=0 can be any vector.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(|a|b+|b|a).(|a|b|b|a)

=|a|b.|a|b|a|b.|b|a+|b|a.|a|b|b|a.|b|a=|a|2b.b|b|2a.a=|a|2|b|2|b|2|a|2=0

 Therefore, |a|b+|b|a and |a|b|b|a are perpendicular.

New answer posted

4 months ago

0 Follower 17 Views

V
Vishal Baghel

Contributor-Level 10

Given,

a=2i^+2j^+3k^b=i^+2j^+k^c=3i^+j^

Now,

a+λb=(2i^+2j^+3k^)+λ(i^+2j^+k^)=(2i^+2j^+3k^)+(λi^+2λj^+λk^)=(2λ)i^+(2+2λ)j^+(3+λ)k^

If (a+λb) is perpendicular to c , then (a+λb).c=0

=[(2λ)i^+(2+2λ)j^+(3+λ)k^].(3i^+j^)=3(2λ)+1(2+2λ)+0(3+λ)=63λ+2+2λ+0=8λλ=8

Therefore, the required value of λ is 8.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.