Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

37

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

92. Given, ab are roots of x23x+p=0

and c & d are roots of x212x+q=0

So, a+b=(3)1 and ab=P1

a + b = +3 ………….I and ab = P…………….II { ? sum of roots = BA , Product of roots = CA }

Similarly, c + d =(12)1 and cd=q1

c + d = 12 ……….III ad cd = q (4)

As a, b, c, d from a G.P and if r be the common ratio

a = a

b = ar

c = ar2

d = ar3

So, from equation, (1),

a+b=3a+ar=3a(1+r)=3 (5)

And c+d=12ar2+ar3=12ar2(1+r)=12 (6)

Dividing equation (6) and (5) we get,

ar2(1+r)a(1+r)=123

 r2 = 4

Now, L.H.S. =q+pqp=cd+abcdab {from (4) and (5)}

=ar2*ar3+a*arar2+ar3a*ar

=a2r(r4+1)a2r(r41)

=(r2)2+1(r2)21=42+1421=16+1161=1715 = R.H.S.

New answer posted

6 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

91. Let r be the common ratio of the G.P.

Then, a, b, c, d a, ar, ar2, ar3

So, an+bn=an+(ar)n=an+anrn=an(1+rn)(1)

bn+cn=(ar)n+(ar2)n=anrn+anr2n=anrn(1+rn) (2)

cn+dn=(ar2)n+(ar3)n=anr2n+anr3n=anr2n(1+rn) (3)

Hence, bn+cnan+bn=anrn(1+rn)an(1+rn)=rn {from (2) and (1)}

and  cn+dnbn+cn=anr2n(1+r2)anrn(1+r2)=rn {from (3) and (2)}

i.e., bn+cnax+bn=cn+dnbx+cn

an+bn,bn+cn,cn+dn are in A.P

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

90. Given, a(1b+1c),b(1c+1a),c(1a+1b) are in A.P.

So, a(c+b)bc,b(a+c)ac,c(b+a)ab are in A.P.

ac+abbc,ab+bcac,bc+acab are in A.P.

If we add 1 to all each terms of the sequence it will given be an A.P of common difference 1.

So, ac+abbc+1,ab+bcac+1,bc+acab+1 are in A.P.

ac+ab+bcbc,ab+bc+acac,Bc+ac+abab are in A.P.

Dividing add of the sum by ab + bc + ac will conserve.

then A.P so,

1bc,1ac,1ab are in A.P.

Similarly multiplying each term by abc we get,

abcbc,abcac,abcab are in A.P.

a, b, c, are in A.P.

Hence proved

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

89. Let A and d be the first term & common difference of the A.P.

Then,

ap=aA+(p1)d=a ………I

ar=cA+(M1)d=c …………III

So, L.H.S. =(q1)a+(np)b+(qq)c

=(qr)[A+(p1)d]+(np)[A+(q1)d]+(pq)[A+(r1)d]

{putting value for I, II, III}

Aq+q(p1)dArr(p1)d+Ar+r(q1)dApp(q1)d

+Ap+p(r1)dAqq(r1)d

pqdqdrpd+rd+rqdrdpqd+pd+rpdpdrqd+qd

=0= R.H.S

New answer posted

6 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

88. Let a and r be the first term & common ratio of the G.P.

So, S = a +ar + ar2 +……… upto n terms.

S=a(1rn)1r

and P = a .ar. ar2 ar . upton n terms.

=anr1+2+3++(n1)

=anr(n1)(n1+1)2

=anrn(n1)2

And R = sum of reciprocal of n terms ( 1a+1arn+........... upto n terms)

=1a[(1r)n1]1r1  As r <1

1r >1

=1a[1rn1]1rr=1a[1rnrn]*r1r

=1rnarn*r1r

=1rna(1r)rn1 …. III

Now, L.H.S. = P2 Rn

=[anrn(n1)2]2·[1xna(1n)rn1]n { equation II & III}

=a2nrn(n1)*[1rn]nan(1n)nrn(n1)

=a2xn*rn(x1)rn(n1)*[1xn]n(1r)n

=an[1rn]n(1r)n

=[a[1rn](1r)]n

=Sn=R.H.S { ? equation I}

New answer posted

6 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

87. Here, a+bxabx=b+cxbcx

(a+bx)(bcx)=(b+cx)(abx)

abacx+b2xbcx2=abb2x+acxbcx2

ababacxacx=b2xb2x+bcx2bcx2

2acx=2b2x

ac=b2

cb=ba …………I

And b+cxbcx=c+dxcdx

(b+cx)(cdx)=(c+dx)(bcx)

bcbdx+c2xcdx=bcc2x+bdxcdx

bcbc+c2x+c2x=bdx+bdxcdx+cdx 

2c2x=2bdx

c2=bd

cb=dc ……………II

From I and II

aa=cb=dc

a, b, c and d are in G.P.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

86. Given, a = 11

Let d and l be the common difference & last term of the A.P.

Then, a+(a+d)+(a+2d)+(a+3d)=56 [first 4 terms sum]

4a+6d=56

6d=564a=564*11=5644=12

d=126=2

And, l+(ld)+(l2d)+(l3d)=112

4l6d=112

4l=112+6d=112+6*2=112+12=124 [last 4 terms sum]

l=1244=31

So, l=31

a+(n1)d=31

11+(n1)2=31

(n1)2=3111=20

n1=202=10

n=10+1

n=11

the A.P. has 11 number of terms.

New answer posted

6 months ago

0 Follower 8 Views

P
Payal Gupta

Contributor-Level 10

85. Let a and r be the first term and common ratio of G.P.

Then, number of term = 2n (even).

a1+a2+?+a2n=5(a1+a3+?+a2n1)[?]

a+ar+.........+ar2n1=5(a+ar2+.......+ar2n11)

a(1r2n)1n=5*a[1(r2)n]1r2 { series on R.H.S. has 2n2=n terms and common ratio ar2a=r2 }

1r2n1r=5[1r2n]1r2 (eliminating a)

1r2r1r=[1r2r1r]*51+r{?a2b2=(ab)(a+b)} 

1=51+r{Eliminating same term}

1+r=5

r=51

r = 4

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

84. Let a, ar and ar2 be the three nos. which is in G.P.

Then, a + ar + ar2 = 56

a ( 1 + r + r2) =56  -I

Given, that a1, ar 7, ar2 - 21 from an AP we have,

(ar7)(a1)=(ar221)(ar7)

ar7a+1=ar221ar+7

ara6=ar2ar14

ar2arar+aa146

ar22ar+a=8

a(r22r+1)=8 ………………. II

Now, dividing equation I by II we get,

a(1+n+n2)a(r22r+1)=568

1+r+r2=7(n22n+1)

1+r+r2=7r214n+7

7r214n+71xr2=0

6r215r+6=0

2r25r+2=0 (dividing by 3 throughout)

2r24rr+2=0

2r(r2)(r2)=0

(r2)(2r1)=0

r2=02r1=0

r=2r=12

So, when r = 2, putting in equation I,

a(1+2+22)=56

a(1+2+4)=56

a(7)=56

a=567=8

The numbers are 8, 8* 2, 8* 22 = 8, 16, 32.

And When r=12 putting in equation I,

a(1+12+122)=56

a(1+12+14)=56

a(4+2+14)=56

a*74=56

a=56*47=32

So, the numbers are 32,32*12,32*(12)232,16,8

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

83. Given, a = 1

a3+a5=90

Let r be the common ratio of the G.P.

So,

Let r be the common ratio of the G.P.

So,

a3+a5=ar3? 1+ar5? 1=90

? a [r2+r4]=90

? 1 [r2+r4]=90? {? a=1}

? r4+r2? 90=0

Let x=r2 so we can write above equation as

x2+x? 90=0x=r2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.