Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

37

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

21. Given, ak =5k+1

Putting k =1,

a1 =5 * 1+1=5+1=6.

an =5n+1=l

So, sum of unto n teams of the AP, Sn = n2 [2a+l]

Sn = n2 [6+5n+1]

n2 [7+5n] .

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

20. The given A.P. is 25,22,19, …

So, a=25

d=22 – 25= –3

Given that, sum of first n terms of the AP=116.

n [2 * 25+ (n – 1) (–3)]=116 * 2

n [50 – 3n+3]=232

n [53 – 3n]=232 .

53n – 3n2=232.

3n2 – 53n+232.

Using quadratic formula, a=3, b= –53, c=232.

n = 53+56 or 5356

586 or 486

293 or 8.

As n  N, n=8.

? Last term=a+ (n – 1)d

=a+ (8 – 1)d

=25+7* (–3)

=25 – 21

=4.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

19. Let a and d be the first term and the common difference of an A.P.

Then, given ap = 1q

a+(p – 1)d = 1q --------(1)

and aq = 1p

a+(q – 1)d = 1p ---------(2)

Subtracting eqn (2) from (1) we get,

a+(p – 1)d – [a+(q – 1)d]= 1q1p

a+(p – 1)d– a–(q– 1)d= pqpq

[(p – 1)–(q – 1)]d= pqpq

[p – 1 – q+1]d= pqpq

[p – q]d= pqpq .

d= 1pq .

Putting d= 1pq in eqn (1) we get,

a+(p1)1pq=1q .

a+1pq1pq=1q

a+1q1pq=1q

a=1q1q+1pq a=1pq .

So, sum of first pq terms,

Spq=pq2[2*1pq+(pq1)1pq]

pq2*1pq[2+pq1] .

12[pq+1]

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

18. Let the sum of n farms of the A.P –6, 112 , –5, …. gives –25.

Then, 

From the given A.P.

a= –6

d= – 112(6)=112+6=11+122=12

So, –25= n2[2*(6)+(n1)(12)]

–25 * 2=n [12+n12]

–50=n [12*2+(n1)2]

–50=n [24+n12]

–50 * 2 =n[n – 25]=n2 – 25n

n2 – 25n+100=0.

n2 – 5n – 20n+100=0

n(n – 5) – 20(n – 5)=0

(n – 5)(n – 20)=0

So, n=5 and n=20.

When n=5

S5=52[12+(51)12]=52[12+4*12]=52[12+2]=52*(10) = –25.

When n=20

S20=202[12+(201)12]=10[12+192] = 120+19*102 = –120 + 19 * 5 = –120 + 95 = –25.

New answer posted

6 months ago

0 Follower 1 View

P
Payal Gupta

Contributor-Level 10

17. Given, a=2

Let A1, A2, A3, A4, A5, A6, A1, A6, A7, A10 be the first ten terms. So, A1=a.

Given A1+A2+A3+A4+A5= 14  (A6+A1+A8+A1+A10)

a+ (a+d)+ (a+2d)+ (a+3d)+ (a+4d)

14  [ (a+5d)+ (a+6d)+ (a+7d)+ (a+8d)+ (a+9d)]

5a+10d= 14  [5a+35d].

4 [5a+10d]=9a+35d.

20a+40d=5a+35d.

40d – 35d=5a – 20a

5d= –15a

d= –3a

d= –3 * 2 [as a=2]

d= –6

So, A20=a+ (20 – 1)d

=2+19 * (–6)

=2 – 114

= –112.

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

16. Sum of all natural number between 100 and 1000 which are multiple of 5.

=105+110+115+ … +995.

So, a=105.

a=110 – 105=5.

As the last term is 995 which is the nthterm,

a+ (n – 1)d =995.

105+ (n – 1) * 5 =995.

(n – 1) * 5=995 – 105.

(n – 1)5 =890

n – 1 = 8905=178

n =178+1

n =179

So, required sum Sn n2 (a+l); l=last term.

=1792 (105+995)

=1792*1100

= 179 * 550

=98450.

New answer posted

6 months ago

0 Follower 13 Views

P
Payal Gupta

Contributor-Level 10

15. Sum of odd integers from 1 to 2001

=1+3+5+ … +2001

So, a=1

d=3 – 1=2

? For nth term,

an=a+ (n – 1)d.

? the last nth term is 2001,

2001 =1+ (n – 1)2.

(n – 1)2 =2001 – 1

n – 1= 20002=1000

n =1000+1

n =1001.

? Sum of n terms, Sn= n2  (a + l); l = last term.

? Required sum = 10012 (1+2001)=10012*20021001*1001 =1002001

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

14. Given, a1=1=a2.

an=an – 1+an – 2,n>2.

We need to find, an+1n

Putting n=3,4,5,6 in an=an – 1+an – 2 we have,

a3=a3 – 1+a3 – 2=a2+a1=1+1=2.

a4=a4 – 1+a4 – 2=a3+a2=2+1=3.

a5=a5 – 1+a5 – 2=a4+a3=3+2=5.

a6=a6 – 1+a6 – 2=a5+a4=5+3=8.

Now, to find an+1n ,

Substitute n=1,2,3,4,5.

a1+1a1=a2a1=11=1

a2+1a2=a3a2=21=2

a3+1a3=a4a3=32

a4+1a4=a5a4=53

a5+1a5=a6a5=85 .

New answer posted

6 months ago

0 Follower 11 Views

P
Payal Gupta

Contributor-Level 10

13. Given,

a1=a2=2.

an=an – 1 – 1

Putting n=3,4,5.

a3=a3 – 1 – 1=a3 – 1 – 1=a2 – 1=2 – 1=1

a4=a4 – 1 – 1=a3 – 1=1 – 1=0

a5=a5 – 1 – 1=a4 – 1=0 – 1= –1 .

Hence the first five forms of the sequence are 2,2,1,0, –1.

And the series is 2+2+1+0+ (–1)+ ….

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

12. Given, a1= –1,

an=an1n,n2

Putting n=2,3,4,5 we get,

a2=a212=a12=12

a3=a313=a23=1/23=16

a4=a414=a34=1/64=124.

a5=a515=a45=1/245=1120 .

So the first five terms of the sequence are –1, 12,16,124 and 1120 .

And the series is (1)+(12)+(16)+(124)+(1120)+ .

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.