Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

57

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

51. Given, sin2x + cos2y = 1. 

Differentiating w r t 'x' we get,

ddx (sin2x + cos2y) ddx1.

ddxsin2x+ddxcos2y=0

2sinxdsinxdx+2cosydcosydx=0

= 2sin x cos x + 2 cos y   (- sin y) dydx=0

= sin 2x- sin 2y dydx = 0

 

New answer posted

8 months ago

0 Follower 16 Views

A
alok kumar singh

Contributor-Level 10

50. Given, sin2y + cos xy = p

Differentiating w r t 'x' we get,

ddx(sin2y+cosxy)=ddx

= ddxsin2y+ddxcosxy=0

2sinyddx(siny)+(sinxy)ddx(xy)=0.

2sinycosydydxsinxy[xdydx+y]=0

2sin2ydydxxsinxydydxysinxy=0

{Qsin 2x = 2sin x cos x}

dydx[sin2yxsinxy]=ysinxy.

dxydx=ysinxysin2yxsinxy.

New answer posted

8 months ago

0 Follower 29 Views

A
alok kumar singh

Contributor-Level 10

49. Given,  x3 + x2y + xy2 + y3 = 81.

Differentiating w r t 'x' we get,

ddx(x3+x2y+xy2+y3) = d(81)dx

dx3dx+ddxx2y+ddxxy2+ddxy3=0

3x2+x2dydx+ydx2dx+xdy2dx+y2dxdx+3y2dydx=0

3x2+x2dydx+2xy+2xydydx+y2+3y2dydx=0.

(x2+2xy+3y2)dydx= - (3x2 + 2xy + y2)

dydx=(3x2+2xy+y2)(x2+2xy+3y2).

New answer posted

8 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

48. Given,  x2 + xy + y2 = 100.

Differentiating w r t 'x' we get,

ddx (x2+xy+y2)=ddx (100)

2x+xdydx+ydxdx+2ydydx=0.

xdydx+2ydydx=2xy

dydx= (2x+y) (x+2y)

New answer posted

8 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

47. Given, xy + y2 = tan x + Differentiating w r t x we get,

ddx (xy+y2)=ddx (tanx+y)

xdydx+ydxdx+dy2dx=dx2x+dydx

xdydx+2ydydxdydx=sen2xy

(x+2y1)dydx=sec2xy

dydx=sin2xyx+2y1.

New answer posted

8 months ago

0 Follower 10 Views

A
alok kumar singh

Contributor-Level 10

46. Given, ax + by2 = cos y.

Differentiating w r t 'x' we get,

ddx (ax+by2)=dxdxcosy

= a + b 2y = - sin y dydx + sin y dydx = -a

= dydx=92by+siny.

= 2by dydx

New answer posted

8 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

45. Given, 2x + 3y = sin y.

Differentiating w r t x. we get,

ddx (2x+3y)=ddxsiny

2+3dydx=cosydydx

=cos y dydx3dydx=2

dydx (cosy3)=2

= dydx=2cosy3

New answer posted

8 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

44. Kindly go through the solution

New answer posted

8 months ago

0 Follower 62 Views

A
alok kumar singh

Contributor-Level 10

43. The given f x n is

f(x) = 0 < |x| < 3

At x = 1

L*H*L* = limh0f(1+h)f(0)h

=limh0[1+h][1]h

limhσ01h {?h<0,1+h<11 So, [1+h]=0}

=limh01h=

Hence lines does not exist

Qf is not differentiable at x = 1

At x = 2

L*H*L = limh0f(2+h)f(2)h {?h<02+h<230,[2+h]=1}

=limh0[2+h][2].h

=limh012h=limh01h

Hence, limit does not exist.

Qf is not differentiable at x = 2

New answer posted

8 months ago

0 Follower 12 Views

A
alok kumar singh

Contributor-Level 10

42. The given f x v is

f(x) = |x- 1|, x ε R

For a differentiable f x v f at x = c,

limh0f(c+h)f(c)h and limh0+f(c+h)f(c)h are finite & equal.

So, at x = 1. f(1) = |1 - 1| = 0.

Now,

L*H*L* = limh0f(1+hf(1)h

limh0|1+h1|0.h=limh0hh {h<0|h|=h}

=limhσ(1)

R*H*L = limh0+f(1+h)f(1)h = - 1.

=limh0+(1+h1)0h=limh0+hh=limh0+1 {?fnh>0|h|=h}

= 1

Hence, L*H*S ¹ R*H*L*

So, f is not differentiable at x = 2.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 685k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.