Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

57

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

41. Kindly consider the following

 

New answer posted

8 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

We know that through three collinear points A,B,C i.e., through a straight line, we can pass an infinite number of planes.

(a) The given points are A(1,1,1),B(6,4,5),andC(4,2,3).

|111645423|=(1210)(1820)(12+16)

=2+24=0

Since A,B,C are collinear points, there will be infinite number of planes passing through the given points.

(b) The given points are A(1,1,0),B(1,2,1),andC(2,2,1).

|110121221|=(22)(2+2)=80

Therefore, a plane will pass through the points A, B, and C.

It is known that the equation of the plane through the points,  (x1, y1, z1),(x2, y2, z2)&(x3, y3, z3) , is

|xx1yy1zz1x2x1y2y1z2z1x3x1y3y1z3z1|=0|x1y1z011311|=0(2)(x1)3(y1)+3z=02x3y+3z+2+3=02x3y+3z=52x+3y3z=5

This is the Cartesian equation of the required plane.

New answer posted

8 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

40. Kindly go through the solution

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(a) The position vector of point (1,0,2) is  a=i^2k^

The normal vector N perpendicular to the plane is  N=i^+j^k^

The vector equation of the plane is given by,  (ra).N=0

[r(i^2k^)].(i^+j^k^)=0.........(1)

r is the position vector of any point (x, y, z) in the plane.

r=xi^+yj^+zk^

Therefore, equation (1) becomes

[(xi^+yj^+zk^)(i^2k^)].(i^+j^k^)=0[(x1)i^+yj^+(z+2)k^].(i^+j^k^)=0(x1)+y(z+2)=0x+yz3=0x+yz=3

This is the Cartesian equation of the required plane.

(b) The position vector of the point (1,4,6) is  a=i^+4j^+6k^

The normal vector  N perpendicular to the plane is  N=i^2j^+k^

The vector equation of the plane is given by,  (ra).N=0

[r(i^+4j^+6k^)].(i^2j^+k^)=0.........(1)

r is the position vector of any point P(x, y, z) in the plane.

r=xi^+yj^+zk^

Therefore, equation (1) becomes

[(xi^+yj^+zk^)(i^+4j^+6k^)].(i^2j^+k^)=0[(x1)i^+(y4)j^+(z6)k^].(i^2j^+k^)=0(x1)+2(y4)+(z6)=0x2y+z+1=0

This is the Car

...more

New answer posted

8 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

39. Let f (x) = cos (x3) sin2 (x5).

f' (x) = cos (x3) d d x  sin2 (x5) + sin2 (x5) d d x cos (x3)

= cos (x3) 2sin (x5) d d x  sin (x5) + sin2 (x5) [sin (x3)] d d x x3.

= 2 cos (x3) sin (x5). cos (x5) d d x   (x5) - sin2 (x5) sin (x3). 3x2

= 2. cos (x3) sin (x5) cos (x5). 5 - 3x2sin2 (x5) sin (x3)

= x2 sin (x5). [2x2 cos (x3) cos (x5) - 3 sin (x5) sin x3].

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(a) Let the coordinates of the foot of perpendicular P from the origin to the plane be  (x1,  y1,  z1).

2x + 3y + 4z  12 = 0

2x + 3y + 4z = 12   (1)

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) It is given that equation of the plane is

r.(i^+j^k^)=2

For any arbitrary point P(x, y, z) on the plane, position vector  r I s given by,  r=xi^+yj^zk^

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(i^+j^k^)=2

x+yz=2

This is the Cartesian equation of the plane.

(b)  r.(2i^+3j^4k^)=1

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(2i^+3j^4k^)=1

2x+3y4z=1

This is the Cartesian equation of the plane.

(c)  r.[(s2t)i^+(3t)j^+(2s+t)k^]=15

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value

...more

New answer posted

8 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

38. Let f(x) = sin(ax+b)cos(cx+d).

f'(x) = cos(cx+d)ddxsin(ax+b)sin(ax+b)ddxcos(cx+d)cos2(cx+d).

cos(cx+d)cos(ax+b)ddx(ax+b)+sin(ax+b)sin(cx+d)d(x+d)dxcos2(cx+d)

=cos(cx+d)cos(ax+b)·a+sin(ax+b)sin(cx+d)·ccos2(cx+d)

New answer posted

8 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

37. Kindly go through the solution

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) It is given that equation of the plane is

r.(i^+j^k^)=2

For any arbitrary point P(x, y, z) on the plane, position vector  r I s given by,  r=xi^+yj^zk^

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(i^+j^k^)=2

x+yz=2

This is the Cartesian equation of the plane.

(b)  r.(2i^+3j^4k^)=1

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(2i^+3j^4k^)=1

2x+3y4z=1

This is the Cartesian equation of the plane.

(c)  r.[(s2t)i^+(3t)j^+(2s+t)k^]=15

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value

...more

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 685k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.