Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

57

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

LH.S =(tan115+tan117)+(tan113+tan118)

=tan1[15+17115·17]+tan1[13+18113,18]{?usingtan1x+tan1yx+y1xy,xy<1}

tan1[7+57*57*517*5]+tan1[8+35*38*318*3]

=tan1(12351)+tan1(11241)=tan11234+tan11123

=tan1617+tan11123

=tan1(617+1231617*323)=tan1(6*23+11*1117*23?7*236*1117*23)

=tan1138+18739166=tan1325325=tan11

=tan1(tan14)

=x4=R.H.S

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let sin1513=x and cos135=y.

Then, sinx=513andcos=35

So, tanx=sinxcosxandtany=sinycosy

=5/312/1=4/53/5.

=512=43.

Using tan(x+y)=lanx+lany1tanxtany.

tan (sin1513+cos135)=512+431512*43= 5*3+4*1212*312*35*412*3

=15+483620=6316

sin1513+cos135=tan16316.

Hence proved.

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

cos11213+sin135=sin15665

Let cos11213=xandsin135=y.

Thin, cosx=1213 and sin y=35

Using sin(x+y)=sinxcosy+cosxsiny.

sin[cos11213+sin135]=513*45+1213*35=20+3665=5665.

cos11213+sin135=sin15665.

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

cos145+cos11213=cos13365°.

Let cos-1 45 and cos-1 1213 = y.

Then, cosx=45 and cosy=1213.

Using cos(x+y)=cosxcosysinxsiny.

cos[cos145+cos11213]=45121335*513

cos[cos145+cot11213]=481565=3365

cos145+cos11213=cos13365.?

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Let sin1817=xsin135=y.

(N. then, sinx=817siny=35.

So, tanx=sinxcosx and tany=sinycosy

=8/1715/17=3/44/5

=815=34

Using.  tan(x+y)=tanx+tany1tanxtany

tan(sin1817+sin135)=815+341815*34

tan (sin1817+sin135=8*4+3*1515*415*48*315*4=32+456024sin

sin-1 817+sin135= tan-1 7736

Hence proved.

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

tan1 (tan7π6)=tan1 (tan6π+π6)

=tan1 (tan6π6+π6)

=tan1 (tanπ+π6)

=tan1 (tanπ6) { Ø tan (π+ Ø ) = tan Ø as tan b (+) we in 3rd quadrant)}

=π6 (π2, π2)

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Cos-1 (cos13π6.) = cos1  (cos12π+π6)

cos1  (cos12π6+π6)

cos1  [cos1 (2π+π6)]  {Øcor2π+=ØcosØ}

=cos1 (cosπ6)

=π6 ∈ [0, x]

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

= sin  [π3+sin1 (sinπ6)]

= sin  [π3+π6] = sin  [2π+π6] = sin  (3π6)

= sin π2=1 

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Cos-1 cos 7π6

(M) As 7π6  [0, π] ;principal value branch of cos-1

cos-1 (cos7π6) = cos-1 (cos2x7π6)  {? cos (2πθ)=cosθ}

= cos-1 (sis12π7π6)

=cos1cos5π65π6 [0, π]

5π6

So, option B is correct

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

tan(sin135+cot132)

(M) Let sin135=x and cot-1 32, = y .

Then sinx=35coty=32

Hence, tan x = sinxcosx = 3545 = 34

tan(sin135+cot132)=tan(x+y)

=tanx+tany1tanxtany .

3*3+2*44*34*33*24*3

4*33*24*3

9+8126=176

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 685k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.