Class 12th
Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
4 months agoContributor-Level 10
(a+b+c)² = a²+b²+c²+2 (ab+bc+ca)
1² = a²+b²+c²+2 (2) ⇒ a²+b²+c² = -3.
a²b²+b²c²+c²a² = (ab+bc+ca)² - 2abc (a+b+c) = 2² - 2 (3) (1) = -2.
a? +b? +c? = (a²+b²+c²)² - 2 (a²b²+b²c²+c²a²) = (-3)² - 2 (-2) = 9+4=13.
New answer posted
4 months agoContributor-Level 10
Δ = |1,1, -1; 1,2, α 2, -1,1| = 1 (2+α)-1 (1-2α)-1 (-1-4) = 2+α+2α-1+5 = 3α+6=0 ⇒ α=-2.
Δ? = |2,1, -1; 1,2, α β, -1,1| = 2 (2+α)-1 (1-αβ)-1 (-1-2β) = 4+2α-1+αβ+1+2β = 4+2α+αβ+2β=0.
4-4-2β+2β=0. This holds.
Δ? = |1,2, -1; 1,1, α 2, β,1| = 1 (1-αβ)-2 (1-2α)-1 (β-2) = 1-αβ-2+4α-β+2 = 1+4α-αβ-β=0.
1-8+2β-β=0 ⇒ -7+β=0 ⇒ β=7.
α+β = -2+7 = 5.
New answer posted
4 months agoContributor-Level 10
sec y dy/dx = 2sinxcosy.
sec²y dy = 2sinx dx.
tan y = -2cosx + C.
y (0)=0 ⇒ 0=-2+C ⇒ C=2.
tan y = 2-2cosx.
y' = (-2sinx)/sec²y.
5y' (π/2) = 5 (2sin (π/2)/sec² (π/2)
sec²y dy/dx = 2sinx.
y' (π/2)? At x=π/2, tan y = 2. sec²y = 1+tan²y = 5.
5 (2sin (π/2) = 5 (2)=10.
New answer posted
4 months agoContributor-Level 10
P (x) = a (x-2)² + b (x-2) + c.
lim (x→2) P (x)/sin (x-2) = lim (x→2) P (x)/ (x-2) = P' (2) = 7.
P' (x) = 2a (x-2) + b. P' (2) = b = 7.
P' (x) = 2a.
P (3) = a (1)² + b (1) + c = a+b+c = 9.
Continuity at x=2 means lim f (x) = f (2).
lim (x→2) (a (x-2)²+b (x-2)+c)/ (x-2) = P' (2) = b=7. This is given.
The problem states f (2)=7.
P (x) = (x-2) (ax+b) form used in solution. Let's use this.
lim (x→2) (x-2) (ax+b)/sin (x-2) = lim (x→2) ax+b = 2a+b = 7.
P (3) = (3-2) (3a+b) = 3a+b=9.
Solving: a=2, b=3.
P (x) = (x-2) (2x+3).
P (5) = (5-2) (2*5+3) = 3 * 13 = 39.
New answer posted
4 months agoContributor-Level 10
Using L'Hopital Rule:
lim (x→2) (2xf (2) - 4f' (x)/1 = 2 (2)f (2) - 4f' (2) = 4 (4) - 4 (1) = 12.
New answer posted
4 months agoContributor-Level 10
I = ∫? π/? π/? dx/ (1+e^ (xcosx) (sin? x+cos? x). Using ∫? f (x)dx = ∫? f (a+b-x)dx. a+b=0.
I = ∫? π/? π/? dx/ (1+e? ) (sin? x+cos? x) = ∫? π/? π/? e? dx/ (e? +1) (sin? x+cos? x).
2I = ∫? π/? π/? dx/ (sin? x+cos? x) = 2∫? π/? dx/ (sin? x+cos? x).
I = ∫? π/? sec? xdx/ (tan? x+1). Let t=tanx.
I = ∫? ¹ (t²+1)dt/ (t? +1) = ∫? ¹ (1+1/t²)dt/ (t²-√2t+1) (t²+√2t+1). No, this is hard.
I = ∫? ¹ (1+1/t²)dt/ (t-1/t)²+2). Let u=t-1/t. I = ∫ du/ (u²+2) = (1/√2)tan? ¹ (u/√2).
= π/ (2√2).
New answer posted
4 months agoContributor-Level 10
(2? -2) is multiple of 3.
If n is odd, 2? ≡ (-1)? =-1 (mod 3). 2? -2 ≡ -1-2 = -3 ≡ 0 (mod 3).
If n is even, 2? ≡ (-1)? =1 (mod 3). 2? -2 ≡ 1-2 = -1 (mod 3).
So n must be odd.
2-digit numbers are 10-99 (90 numbers).
Odd numbers are 11,13, .,99. Number of terms = (99-11)/2 + 1 = 45.
Probability = 45/90 = 1/2.
New answer posted
4 months agoContributor-Level 10
For x>2, f (x) = ∫? ¹ (5+1-t)dt + ∫? ² (5+t-1)dt + ∫? (5+t-1)dt
= ∫? ¹ (6-t)dt + ∫? ² (4+t)dt + ∫? (4+t)dt
= [6t-t²/2]? ¹ + [4t+t²/2]? ² + [4t+t²/2]?
= (6-1/2) + (8+2 - (4+1/2) + (4x+x²/2 - (8+2)
= 5.5 + 5.5 + 4x+x²/2 - 10 = 4x+x²/2 + 1.
f (2? ) = 8+2+1 = 11. f (2? ) = 5 (2)+1 = 11. Continuous.
f' (x) = 4+x for x>2. f' (2? ) = 6.
For x<2, f' (x)=5. f' (2? )=5.
Not differentiable at x=2.
New answer posted
4 months agoContributor-Level 10
Circle: (x-1)² + (y-3)² = 4. C= (1,3), r=2.
Length of tangent from P (-1,1) is L = √ (-1)²+1²-2 (-1)-6 (1)+6) = √ (1+1+2-6+6) = √4 = 2.
Area of quadrilateral PACB = 2 * Area (PAC) = 2 * (1/2 * L * r) = 2*2=4.
AB is chord of contact. T=0 => -x+y- (x-1)-3 (y-1)+6=0 => -2x-2y+10=0 => x+y=5.
Distance of C from AB = |1+3-5|/√2 = 1/√2.
Length of AB = 2√ (r²-d²) = 2√ (4-1/2) = 2√ (7/2) = √14.
Area of ABD =?
New answer posted
4 months agoContributor-Level 10
Area = ∫? ² (2? - logx)dx = [2? /ln2 - (xlnx-x)]? ²
= (4/ln2 - (2ln2-2) - (2/ln2 - (0-1) = 2/ln2 - 2ln2 + 1.
α=2, β=-2, γ=1.
(α+β-2γ)² = (2-2-2)² = 4.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 66k Colleges
- 1.2k Exams
- 681k Reviews
- 1800k Answers
