Class 12th

Get insights from 12k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
12k

Questions

0

Discussions

59

Active Users

0

Followers

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx+ytanx=secx Since itislineardifferentialequationwhereP=tanxandQ=secxI.F.=eP.dx=etanx.dx=elogsecx=secxSo,thesolutionisy*I.F.=Q*I.F.dx+cy*secx=secx.secxdx+cy*secx=sec2x.dx+cysecx=tanx+cHence,thecorrectoptionis(a).

New answer posted

7 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisd2ydx22dydx+y=0 Since theaboveequationisoforderandfirstD2y2Dy+y=0,whereD=ddx(D22D+1)=0auxiliaryequationism22m+1=0(m1)2=0m=1,1IftherootsofAuxiliaryequationarerealandequalsay(m)then,CF=(c1x+c2).emxCF=(Ax+B).exSo,y=(Ax+B).exHence,thecorrectoptionis(a).

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationoffamilyofcurvesisy2=4a(x+a)y2=4ax+4a2(i)Differentiatingbothsides,w.r.t.x,weget2y.dydx=4ay.dydx=2ay2.dydx=aNow,puttingthevalueofaineqn.(i)wegety2=4x(y2.dydx)+4(y2.dydx)2y2=2xydydx+y2(dydx)2y=2xdydx+y(dydx)22x.dydx+y.(dydx)2y=0Hence,thecorrectoptionis(d).

New answer posted

7 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis[1+(dydx)2]=d2ydx2Here,thehighestderivativeis2,order=2andthepowerofthehighestderivativeis1 degree=1Hence,thecorrectoptionis(c).

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis[d3ydx3]23d2ydx2+2(dydx)4=y4Here,thehighestderivativeisd3ydx3.orderofthedifferentialequationis3andthepowerofthehighestderivativeis2its degreeis 2Hence,thecorrectoptionis(d).

New answer posted

7 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx+y=exSince 
itislineardifferentialequationwhereP=1andQ=exI.F.=eP.dx=e1.dx=exSo,thesolutionisy*I.F.=Q*I.F.dx+cy*ex=ex.exdx+cy*ex=e0.dx+cy.ex=1.dx+cy.ex=x+cPuty=0andx=00=(0+c)c=0equationisy.ex=xSo,y=x.exHence,thecorrectoptionis(d).

New answer posted

7 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivenequationisy=acosx+bsinxdydx=asinx+bcosxd2ydx2=acosxbsinxd2ydx2=(acosx+bsinx)d2ydx2=yd2ydx2+y=0Hence,thecorrectoptionis(a).

New answer posted

7 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationis(2y1)dx(2x+3)dy=0(2x+3)dy=(2y1)dxdy2y1=dx2x+3Integratingbothsides,wegetdy2y1=dx2x+312log|2y1|=12log|2x+3|+logclog|2y1|=log|2x+3|+2logclog|2y1|log|2x+3|=logc2log|2y12x+3|=logc22y12x+3=c22x+32y1=1c22x+32y1=k,wherek=1c2Hence,thecorrectoptionis(c).

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Thegivendifferentialequationisdydx=ex22+xydydxxy=ex22 Since itislineardifferentialequationwhereP=xandQ=ex22I.F.=eP.dx=ex.dx=ex22So,thesolutionisy*I.F.=Q*I.F.dx+cy*ex22=ex22.ex22dx+cy*ex22=e0.dx+cy.ex22=1.dx+cy.ex22=x+cy=(x+c)ex22Hence,thecorrectoptionis(c).

New answer posted

7 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is an Objective Type Questions as classified in NCERT Exemplar

Sol:

Since,theslopeofthetothecurve=x:ydydx=xyydy=xdxIntegratingbothsides,wehaveydy=xdxy22=x22+cy2=x2+2cy2x2=2c=kwhichis rectangularhyperbola.Hence,thecorrectoptionis(d).

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 684k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.