Class 12th

Get insights from 11.8k questions on Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 12th

Follow Ask Question
11.8k

Questions

0

Discussions

58

Active Users

0

Followers

New answer posted

8 months ago

0 Follower 25 Views

V
Vishal Baghel

Contributor-Level 10

We have,

(E) (B'AB)' = [B' (AB]'

= (AB)' (B')'

= B'A'B.

When A is symmetric, A' = A

(B'AB)' = B'AB

ie, B'AB is symmetric.

And when A is skew-symmetric, A1 = -A

(B'AB)' = -B'AB.

ie, B'AB is skew-symmetric.

New answer posted

8 months ago

0 Follower 75 Views

V
Vishal Baghel

Contributor-Level 10

Given, A and B are symmetric matrices.

(E) Then A' = A and B' = B.

Now, (AB - BA)' = (AB)' - (BA)'

= B'A' - A'B'

= BA - AB

= - (AB - BA).

Hence, AB BA is skew-symmetric matrix

New answer posted

8 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have,

=[3(1+2k)+(4k)*14(1+2k)+(4k)(1)3k+1*(12k)4*k+(12k)(1)]

=[3+6k4k48k+4k3k+12k4k+2k1]=[3+2k44k1+k12k]

=[1+2+2k4(1+k)1+k122x]

=[1+2(1+k)4(1+k)1+k12(1+k)]

The results also holds for n = k + 1. Hence, An =[1+2n4nn12n]

Holds for all natural number n.

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have,

(E) P (n) : If A = [
111111111
 ]. then An[3n13n13n13n13n13n13n13n13n1] n ? N.

P (1) : A1= [311311311311311311311311311] = [303030303030303030] =[
111111111
 ]

So, the result holds true for n = 1.

Let the result be for n = k. So,

P (k): Au= [3k13k13k13k13k13k13k13k13k1]

Then P (k+1): Ak + 1 = Ak. A = [3k13k13k13k13k13k13k13k13k1] [
111111111 ]

[3k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k1]

= Ak + 1 = [3(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)13(k+1)1]

The result holds for n = k + 1. Hence,

An = [3n13n13n13n13n13n13n13n13n1] holds for all natural number.

New answer posted

8 months ago

0 Follower 27 Views

V
Vishal Baghel

Contributor-Level 10

We shall prove the result by using principal of mathematical induction

we have,

P (n) :- If A = [0100] , then (a I + b A)n = an I + nan - 1b A where I is identity matrix of order 2, n∈N

P (1): (a I + b A)1 = a1I + 1 ´a1 - 1b A

= a I + a0bA

= a1I + b A {Qx0 = 1}

So the result is true for n = 1.

Let the result be true for n = k. So,

P (k): (a I + b A)u = auI + u. au-1b A. _____ (1)

Now, we prove that the result holds for n = k + 1,

P (k + 1): (a I + b A)k + 1 = (a I + b A). (a I + b A)k

= (a I + b A) (auI + k au 1b A){using eqn (1)}

= a.akI2 + k. a au - 1b IA + akb.AI + a zzk 1b2k A2

= ak + 1I2 + k au - 1+1b IA + ak b AI + ak - 1b2 k A2 _____ (2

...more

New answer posted

8 months ago

0 Follower 16 Views

V
Vishal Baghel

Contributor-Level 10

Matrices A and B will be inverse of each other if.

(E) AB = BA = I.

Here option D is correct.

New answer posted

8 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

Let A = [201510013]

 

[112201013]=[210100001] A.

[11222(1)02(1)12(2)013]=[21012(2)02(1)02(0)001] A. (R2      R2  ----> 2R1)

[112025013]=[210520001] A.

[112013025]=[210001520] A. (R2  <-->R3)

[1120130+2(0)2+2(1)5+2(3)]=[2100015+2(0)2+2(0)0+2(1)] A. (R3 ->R3 + 2R2)

[112013001]=[210001522] A.

[12(0)12(0)22(1)03(0)13(0)33(1)001]=[22(5)12(2)02(2)03(5)03(2)13(2)522] A. (R1R12R3R2R23R3)

[110010001]=[12541565522] A.

[101100010001]=[12(+15)564(5)1565522] A. (R1 --->R1 - R2).

[100010001]=[3111565522] A.

∴ A1 = [3111565522]

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let A = [132305250]

We write A = IA

[132305250]=[100010001] A.

[1323+3(1)0+3(3)5+3(2)22(1)52(3)02(2)]=[1000+3(1)1+00+002(1)0010] A. (R2R2+3R1R3R32R1)

=[132091101.4]=[100310201] A.

[132014p0911]=[100201310] A. (R2        R3)

[1320140911]=[100201310] A. (R2   (-1) R2)

[1320140099(1)119(4)]=[10020139(2)1009(1)] A. (R3     R3--> 4R2)

[1320140025]=[1002011519] A.

[132014001]=[1002013512595] A. (R3125R3)

[1320+01+04+4(1)001]= =[102+4(35)0+4(125)1+4*(925)325125925] A. (R2     R2 + 4R3)

[132010001]=[10025425112535125925] A.

[1+03+02+2(1)010001]=[1+2(35)0+2(125)0+2(923)25425112535125925] A. (R1  R1 + 2R3)

[130010001]=[15225182525425112535125925] A.

[1+033(1)0+0010001]= [153(25)2253(425)18253(1125)254511253525925] A. (R1   R1 3R2)

[100010001]=[1102515252542512535125925] A.

[100010001]=[1253525425112535125925] A.

∴A-1 = [1253525425112535125925]

New answer posted

8 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Let A = [233223322]

We write, A = IA

[233223322]=[100010001] A.

[322223233]=[001010100] A. [R3R1)

[322223223233][000110010100] A. (R1   R1 -->R2)

[141223233]=[0110101000] A.

|14122(1)2+2(4)32(1)22(1)3+2(4)32(1)|=[01102(0)12(1)02(1)12(0)02(1)02(1)] A.

(R2R22R1

R3R32R1)

[1410105055]=[011032122] A.

1:x236+y216=1

[1410010555055]=[01101322(2)122] A. (R2   R2 --->R3)

[141050055]=[011110122] A.

[141010011]=[01115150152525] A. (R215R2R315R3)

[141010001110]=[011151501/5(15)25150(25)0] A. (R3       R3 -->R2)

[141010001]=[01115150251525] A.

[1+04+01+1010001]=[0+251+151+(25)15150251525] A. (R1      R1 + R3)

[140010001]=[25453515150251525] A.

[1+04+4(1)0+0010001]= [25+4(15)45+4(15)35+4(0)15150251525] A. (R1      R1 + 4R2)

[100010001]=[2503515150251525] A.

∴A-1 = [2503515150251525]

New answer posted

8 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let A = [2142]

We write, A = IA.

[2142]=[1001] A.

[11242]=[12001] A. (R112R1)

[11244(1)24(12)]=[12004(12)14(02)] A. (R2       R2 --->4R1)

[11200]=[12021] A.

∴A-1 does not exit

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 684k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.