Continuity and Differentiability

Get insights from 335 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
335

Questions

0

Discussions

4

Active Users

0

Followers

New question posted

2 months ago

0 Follower 7 Views

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

Since, lim (x→0) f (x)/x exist ⇒ f (0) = 0
Now, f' (x) = lim (h→0) (f (x+h)-f (x)/h = lim (h→0) (f (h)+xh²+x²h)/h (take y = h)
= lim (h→0) f (h)/h + lim (h→0) (xh) + x²
⇒ f' (x) = 1 + 0 + x²
⇒ f' (3) = 10

New question posted

2 months ago

0 Follower 2 Views

New answer posted

2 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

y² + ln (cos² x) = y x ∈ (-π/2, π/2)
for x = 0 y = 0 or 1
Differentiating wrt x
⇒ 2y' - 2tan x = y'
At (0,0)y' = 0
At (0,1)y' = 0
Differentiating wrt x
2yy' + 2 (y')² - 2sec² x = y'
At (0,0)y' = -2
At (0,1)y' = 2
∴ |y' (0)| = 2

New answer posted

2 months ago

0 Follower 15 Views

R
Raj Pandey

Contributor-Level 9

f' (x)= (x- (1+x)ln (1+x)/ (x² (1+x). Let h (x)=x- (1+x)ln (1+x).
h' (x)=-ln (1+x). h' (x)>0 for x∈ (-1,0), <0 for x (0, ).
h (0)=0, so h (x)≤0. f' (x)≤0. f is decreasing.

New answer posted

2 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

f (x) = {ae? +be? , -1For continuity at x=1
Lim (x→1? )f (x) = Lim (x→1? )f (x)
⇒ ae+be? ¹=c ⇒ b=ce-ae²
For continuity at x=3
Lim (x→3? )f (x) = Lim (x→3? )f (x)
⇒ 9c=9a+6c ⇒ c=3a
f' (0)+f' (2)=e
(ae? -be? ) at x=0 + (2cx) at x=2 = e
⇒ a-b+4c=e
From (1), (2) and (3)
a-3ae+ae²+12a=e
⇒ a (e²+13-3e)=e
⇒ a=e/ (e²-3e+13)

New answer posted

3 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

f (x) is discontinuous at integers x=1,2,3. P= {1,2,3}.
f (x) is not differentiable at integers and where x- [x]=1+ [x]-x ⇒ 2 (x- [x])=1 ⇒ {x}=1/2.
So at x=0.5, 1, 1.5, 2, 2.5.
Q= {0.5, 1, 1.5, 2, 2.5}. Sum of elements is not asked.
Number of elements in P=3, in Q=5. Sum = 8.
Let's check the solution. Q= {1/2, 1, 3/2, 5/2}.
The sum of number of elements: 3+5=8.

New answer posted

3 months ago

0 Follower 23 Views

V
Vishal Baghel

Contributor-Level 10

L.H.L = lim (x→0? ) (1 + |sin x|)³? /|sin x| = lim (h→0) (1 + sinh)³? /sinh = e³?
R.H.L = lim (x→0? ) e^ (cot 4x / cot 2x) = lim (x→0? ) e^ (tan 2x / tan 4x) = e¹/².
f (0) = b.
For continuity, e³? = e¹/² = b.
3a = 1/2 ⇒ a = 1/6. b = e¹/².
6a + b² = 6 (1/6) + (e¹/²)² = 1 + e

New answer posted

3 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Given

( x ) = { 2 s i n ( π x 2 ) , x < 1 | a x 2 + x + b | , 1 x 1 s i n π x , x > 1

If f (x) is continuous for all x R then it should be continuous at x = 1 & x = -1

At x = -1, L.H.L = R.H.L. Þ 2 = |a + b - 1|

=>a + b – 3 = 0  OR  a + b + 1 = 0 . (i)

=>a + b + 1 = 0 . (ii)

           (i) & (ii), a + b =-1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.