Continuity and Differentiability

Get insights from 335 questions on Continuity and Differentiability, answered by students, alumni, and experts. You may also ask and answer any question you like about Continuity and Differentiability

Follow Ask Question
335

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

84. Given, f(x) = (1 + x)(1 + x 4)(1 + x 8)

Taking log,

logf(x) = log (1 + x) + log (1 + x) + log (1 + x 4) + log (1 + x 8)

Now, Differentiating w r t 'x' we get,

1f(x)f(x)=11+xddx(1+x)+11+x2ddx(1+x2)+11+x4ddx(1+x4)+11+x8d(1+x8)dx

f(x)=f(x){11+x+2x1+x2+4x31+x4+8x71+x8}.

f(x)=(1+x)(1+x2)(1+x4)(1+x8){11+x+2x1+x2+4x31+x4+8x71+x8}

Putting x = 1

f'(x) = (1 +1)(1 + 14)(1 +18) {11+1+2*11+12+4*131+14+8*171+18}

=2*2*2+2{12+22+42+82}

=16*{152}=8*15=120.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

83. Given, xy = ex-y.

Taking log,

log (x + y) = log (ex-y).

=logx + log y = (x-y) log e.

= logx +log y = x -y {Q log e = 1}

Differentiating w r t 'x' we get,

1x+1ydydx=1dydx

1ydydx+dydx=112

dydx (1y+1)= (x1x)

dydx (1+yy)= (x1x)

dydx=y (x1)x (1+y)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

82. Given, (cos x)y = (cos y)x

Taking log, y log (cos x) = x log (cos y)

Differentiating w r t 'x' we get,

= yddx log (cos x) + log (cos x) dydx=xddx log (cos y) + dog (cos y) dxdx

= y´ 1cosxddx cos x + log (cos x) dydx = x´ 1cosyddxcosy+log(cosy).

ysinxcosx+log(cosx)dydx=xsinycosydydx+log(cosy)

= log (cos x) dydx + x tan dydx=yctanx+log(cosy)

dydx[log(cosx)+xtany] = y tan x + log (cos y )

dydx=ytanx+log(cosylog(cosx)+xtany.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

81. Given, yx = xy

Taking log,

x log y .log x

Differentiating w r t 'x' we get,

xddxlogy+logydxdx=yddxlogx+logxdydx

xy·dydx+logy=yx+logxdydx

logxdydxxydydx=logyyx

dydx [ylogxxy]=xlogyyx

dydx=y (xlogyy)x (ylogxx).

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

80. Given, xy + yx = 1

Let 4 = xy and v =., we have,

u + v = 1.

dydx+dvdy=0 ___ (1)

So, u = xy

= log u = y log x(taking log)

Now, differentiating w r t 'x',

14dydx=yddxlogx+logxdydx.

dydx=4[yx+logxdydx]

xy·yx+xylogx·dydx

= xy- 1y + xy log x dydx.

And v = yx.

log v = x log y.

Differentiating w r t 'x',

1vdvdx=xddxlogy+logydxdx

=xydydx+logy

dvdx=v[xydydx+logy]

=yx·xy·dydx+yxlog·y

= yx- 1. xdydx + yx log y.

So, eqn (1) becomes

xy- 1y + xy log x dydx + yx - 1 dydx + yx log y = 0

dydx(xylogx+yx+1·x) = - (xy- 1y + yx log y)

dydx=(xy1·y+yxlogy)(xylogx+yx1·x).

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

79. Let y = (x cos x) x + (x sin) 1x

Putting u = (x cos x)x and v = (x sin x) 1x we, have,

y = u + v

dydx=dydx+dvdx ____ (1)

As u = (x cos x)x :

Taking log,

Log u = x log (x cos x)

= x [log x + log (cos x)]

Differentiating w r t 'x' we get,

14dudx=xddx [log x + log (cos x)] + [log x + dog (cos x)] dxdx

=x[1x+1cosxdcosxdx] + [log x +log (cos x)]

=[1+xcosx(sinx)] + log x + log (cos x)

= 1 -x tan x + log (x cos x)

dydx = 4 [1 -x tan x + log (x cose)]

=(x cos x)x  (x cos x)x [1 -x tan + log + log (x cos x)]

And v = (x sin x) 1x

Taking log, log v = 1x log (x sin x)

=1x (log x + log sin x)

Differentiating w r t 'x'

1vdvdx=1x·ddx (log x + log sin x) + (log x + log sin x) ddx(1x)

=1x[1x+1sinxddxsinx] + log

...more

New answer posted

4 months ago

0 Follower 17 Views

A
alok kumar singh

Contributor-Level 10

78. Let y = xx cos x  a2+1x21

Putting  4 = xx cos x and vx2+1x21 we have,

y = u + v

dydx=dydx+dvdx ____ (1)

As u |=| xx cos x.

Taking log,

Log u = x cos x log x

Differentiating w r t 'x',

1udydx=xddx [cos x log x] + cos x log x dxdx

= x {cotxddxlogx+logxddxcosx} + cos x log x.

=x{cosx·1xsinx·logx} + cos x log x.

= cos x- sin x. log x + cos x log x.

dydx=u [cosx + cos x log x- sin x log x]

= xx cos x [cos x + cos x log x-x sin x log x]

And v = x2+1x21

So, dvdx=(x21)ddx(x2+1)(x2+1)ddx(x1)(x21)2

=(x21)(2x)(x2+1)(2x)(x21)2

=2x32x2x32x(x21)2

=4x(x21)2.

Hence, eqn (1) becomes,

dydx xxcos x [cos x + cos x log x-x sin x log x4x(x21)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

77. Let y = x sin x + (sin x) cos x

Putting u = x sin x and v = (sin x) cos x we have,

y = u + v

dydx=dydx+dvdx _____ (1)

As u = x sin x

Taking log,

Log u = sin x log x

Differentiating w r t 'x',

,

14dydx = sin x ddx log x + log x ddx sin x

sinxx+ cos x log x

dydx=u[sinxx+cosxlogx]

= x sin x [sinxx+cosxlogx].

And v = (sin x) cos x

Taking log,

Log v = cos x log (sin x).

Differentiating w r t 'x',

1vdvdx = cos x ddx log (sin x) + log (sin x) ddx cos x

=cosxsinxddx sin x- sin x log (sin x)

= cot x cos x- sin x log (sin x)

dvdx = v [cot x cos x - sin x log (sin x)]

= (sin x) cos x [cot x cos x- sin x log (sin x)]

Hence, eqn (1) becomes

dydx=xsinx[sinxx+cosxlogx] + (sin x) cos x [cot x cos x- sin x log (

...more

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

76. Kindly go through the solution

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

75. Let y = (log x)x + x log x.

Putting u = log xx and v = x log x we get,

y = u + v

dydx=dydx+dvdx .____ (1)

As u = log xx

Taking log,

Þlog u = x [log(log x)]

Differentiating w r t x we get,

1ydydx=xddx log (log x) + log (log x)  dxdx

= x*1logxdlogxdx + log (log x)

xlogx*1x+log1(logx)

dydx=μ[1logx+log(logx)]

dydx=(logx)x[1logx+log(logx)].

= (log x)x[1+logx.log(logx)logx]

= (log x)x- 1 [1 + log ´. log (log x)]

And v = log x

Taking log,

Log v = log x log x. = (log x)2.

Differentiating w r t 'x' we get,

1vdvdx=2logxddxlogx

dvdx = 2v log x1x

= 2. x log x. logxx

= 2 x log x- 1 log x.

Hence eqn becomes

dydx= (log x) x- 1[1 + log x log (log x)] + 2x log x- 1 log x

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.