Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

9

Active Users

1

Followers

New answer posted

2 weeks ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

d y 1 + y 2 = 2 e x d x 1 + ( e x ) 2 + C

t a n 1 y = 2 t a n 1 e x + C

x = 0, y = 0

0 = 2 t a n 1 + C

C = + π 2

now at x = l n 3

t a n 1 y = 2 t a n 1 ( e l n 3 ) + π 2

6 ( y ' ( 0 ) + ( y ( l n 3 ) ) 2 ) = 6 ( 1 + 1 3 ) = 4

New answer posted

2 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y 1 + y 2 = 2 e x d x 1 + ( e x ) 2 + C  

t a n 1 y = 2 t a n 1 e x + C

x = 0, y = 0

0 = 2 t a n 1 + C

-> C = + π 2

now at x =  l n 3  

t a n 1 y = 2 t a n 1 ( e l n 3 ) + π 2

6 ( y ' ( 0 ) + ( y ( l n 3 ) ) 2 ) = 6 ( 1 + 1 3 ) = 4  

New question posted

2 weeks ago

0 Follower 2 Views

New answer posted

2 weeks ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

[ x x 2 y 2 + e y / x ] x d y d x = x + [ x x 2 y 2 + e y / x ] y

e y / x [ x d y y d x ] = x d x + x x 2 y 2 ( y d x x d y )

e y / x d ( y / x ) = d x x d ( y / x ) 1 ( y / x ) 2

Integrating

e y / x = l n x s i n 1 ( y x ) + c

Passes (1, 0)

⇒ 1 = c

α = 1 2 e x p ( e 1 + π 6 )

New answer posted

2 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y d x + 2 x x 1 y = 1 ( x 1 ) 2

IF  = e 2 x x 1 d x  

e 2 x ( x 1 ) 2  

y e 2 x ( x 1 ) 2 = { e 2 x ( x 1 ) 2 ( x 1 ) 2 d x + C

y =  e 2 x 2 ( x 1 ) 2 + C ( x 1 ) 2  

y(2) =  1 + e 4 2 e 4 , C = 1 2  

y(3) =  e α + 1 β e α = e 6 + 1 8 e 6  

New answer posted

2 weeks ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

d y d x + 2 y t a n x = s i n x , I . F . e 2 t a n x d x = s e c 2 x  

= cos x – 2 cos2 x = 2 ( c o s x 1 4 ) 2 + 1 8 y m a x = 1 8

New answer posted

3 weeks ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

e s i n x ( 5 + c o s 2 x ( 2 s i n x ) 3 + c o s 2 x ) c o s x d x

put sin x = t

  e t ( 6 t 2 ( 2 t ) 4 t 2 ) dt

e t ( 2 + t 2 t + 2 ( 2 t ) 3 / 2 ( 2 + t ) 1 / 2 ) d t

If g ( t ) = 2 + t 2 t , g ' ( t ) = 2 ( 2 t ) 3 / 2 ( 2 + t 2 ) 1 / 2

e t 2 + t 2 t + c

f ( π 2 ) = 3 e

 

New answer posted

3 weeks ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

x d y + y d x = x y d x 1 x 2

d ( x y ) x y = d x 1 x 2

Integrate both sides we get

logexy = sin1 x + C

New answer posted

3 weeks ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

y ( y d x + x d y ) = x 5 x d y - y d x x 2

d ( x y ) = x 5 y - 1 x d y - y d x x 2 d ( x y ) = ( x y ) α y x β d y x

α - β = 5 α + β = - 1

2 α = 4 α = 2 β = - 3

( x y ) - 2 d ( x y ) = y x - 3 d y x - ( x y ) - 1 = - 1 2 y x - 2 + c

- ( x y ) - 1 = - 1 2 y x - 2 + c Passing ( 1,1 )

- 1 = - 1 2 + c c = - 1 2 ; - ( x y ) - 1 = - 1 2 y x - 2 - 1 2

New answer posted

3 weeks ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

The equation of the line through P (x, y) making an angle with the x-axis which is supplementary to the angle made by the tangent at P (x, y) is

Y y = d y d x ( X x )                    …. (1)

At the point where it meets the x-axis

Y = 0, X = x    + y d y d x O A = x + y d y d x    …. (2)

The line through P (x, y) and perpendicular to (1) is

Y y = d x d y ( X x )           

At the point where it meets the y-axis

X = 0 , Y = y = x d y d x O B = y x d y d x           .

x 2 + 2 x y y 2 = 2            

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.